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29 SUMMARY

30 Dietary switch from a low-fat and high-fiber diet to a Western-style high-fat and high-sugar 

31 diet is a common cause of microbiota imbalances underlying a variety of pathological 

32 conditions (i.e. dysbiosis). Although the effects of such dietary changes on microbiota 

33 composition and functions are well documented, their putative impact in gut bacterial 

34 evolution remains unexplored. Here we followed the emergence of mutations in Bacteroides 

35 thetaiotaomicron, a prevalent fiber-degrading microbiota member, upon colonization of the 

36 murine gut under different dietary regimens. B. thetaiotaomicron evolved rapidly to the gut 

37 and Western-style diet selected for mutations that promote the degradation of mucin-derived 

38 glycans. Periodic changes in diet led to fluctuations in the frequency of such mutations and 

39 were associated with metabolic shifts, resulting in the maintenance of higher intra-species 

40 genetic diversity compared to constant dietary regimens. Finally, our results suggest that B. 

41 thetaiotaomicron genetic diversity can be a biomarker for dietary differences among 

42 individuals.
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56  INTRODUCTION

57 The mammalian gut is inhabited by a diverse community of microbes, the gut microbiota, 

58 which establishes a symbiotic relationship with the host. This community is composed of 

59 hundreds of different species with vast genomic and metabolic repertoires that complement 

60 many host functions. Therefore, the gut microbiota can contribute to host health and 

61 physiology by influencing host nutrition, maturation of the immune system, and direct 

62 protection against infections (Baumler and Sperandio, 2016; Dominguez-Bello et al., 2019; 

63 Flint et al., 2012; Gilbert et al., 2018; Hooper et al., 2012; Rakoff-Nahoum et al., 2004; Ubeda 

64 et al., 2017). One of the most important functions provided by gut microbiota relates to its 

65 metabolic capabilities, which supply nutrients and energy via the degradation of resources 

66 that cannot be digested by the host, such as dietary plant fibers (Sonnenburg and Bäckhed, 

67 2016). Degradation of these long-chain polysaccharides is performed by thousands of lytic 

68 enzymes, produced by members of gut microbiota, that depolymerize and ferment dietary 

69 polysaccharides into host-absorbable short-chain fatty acids (SCFAs) (El Kaoutari et al., 

70 2013). Given the chemical diversity of dietary plant polysaccharides, the high genetic 

71 diversity provided by a high microbial diversity in the gut microbiota is linked to robust 

72 metabolism and improved host health, while a low gut microbial diversity is generally 

73 associated with disease (Le Chatelier et al., 2013; Cotillard et al., 2013; Turnbaugh et al., 

74 2009a). Many factors, such as drugs, lifestyle, and inflammatory responses to infections can 

75 perturb microbiota composition, and often result in decreased diversity (Relman, 2020). 

76 The host diet changes the microbiota, and the impacts go beyond the known direct 

77 effect on body weight and metabolic imbalances (Kreuzer and Hardt, 2020; Sonnenburg and 

78 Sonnenburg, 2014). Many members of the microbiota rely on dietary fibers for their metabolic 

79 functions. Therefore, shifts from a diet low in fat and rich in plant fibers (hereby Standard 

80 Diet, SD) to a diet high in fat and simple sugars and low in polysaccharides from plant fibers 

81 (hereby Western-style Diet, WD), cause dramatic changes in the composition of gut 

82 microbiota in humans and rodents (David et al., 2014; Desai et al., 2016; Faith et al., 2011; 

83 McNulty et al., 2013; Rey et al., 2013; Turnbaugh et al., 2009b; Zhang et al., 2012). A dietary 
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84 change that extends over several host generations can cause the irreversible loss of several 

85 important taxa from the microbiota, the most affected being the Bacteroidetes (Sonnenburg 

86 et al., 2016). 

87 The members of the Bacteroidetes phylum, which includes the genus Bacteroides, 

88 are the most abundant Gram-negative gut symbionts in urban human populations, and in 

89 many humans can constitute 50-80% of the microbiota (The Human Microbiome Project 

90 Consortium*, 2012). The Bacteroides are among the microbiota members with the larger 

91 repertoire of lytic enzymes capable of degrading chemically diverse long-chain 

92 polysaccharides and can be considered gut specialists in fiber degradation (Porter and 

93 Martens, 2017). While most Bacteroides degrade complex polysaccharides from dietary plant 

94 fibers, some can also metabolize host glycans (Salyers et al., 1977a, 1977b). As a result, 

95 diets depleted in fiber lead not only to a decrease in members of Bacteroides that rely mainly 

96 on the digestion of plant fibers, but also in shifts in gene expression and enzyme production 

97 in Bacteroides capable of accessing both plant and host-polysaccharides (Sonnenburg et al., 

98 2016, 2005). The increase in consumption of host glycans by microbiota can have negative 

99 consequences for the host as it can decrease the thickness of the mucus layer and 

100 accelerate disease progression induced by the pathogen Citrobacter rodentium (Desai et al., 

101 2016; Kreuzer and Hardt, 2020). Additionally, a diet lacking microbiota-accessible 

102 carbohydrates favors Clostridioides difficile infections (Hryckowian et al., 2018), and a high-

103 fat diet can favor Salmonella Typhimurium gut colonization (Wotzka et al., 2019). 

104 The negative impacts of a WD on the microbiota are well documented, WD changes: 

105 microbiota composition, patterns of gene expression in members of these community, and 

106 gut metabolome (Albenberg and Wu, 2014; Desai et al., 2016; Turnbaugh et al., 2009a). 

107 However, the potential evolutionary implications for species present in the microbiota remain 

108 unexplored (Crook et al., 2019; Ghalayini et al., 2019). The evolution of bacteria in laboratory 

109 cultures is strongly influenced by the nutrients available in the medium. For example, the 

110 type and abundance of the carbon source affects both which mutations will be adaptive and 

111 the mutational spectrum (Maharjan and Ferenci, 2017; Turner et al., 2018). Host diet affects 
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112 the nutrients available for bacteria in the gut, but knowledge is very limited about how that 

113 affects gut bacterial evolution. Yilmaz, et. al., recently showed that, in mice colonized with a 

114 defined microbiota community, different variants and sub-strains can coexist within individual 

115 taxa and that changes in diet affect not only the proportion of the different taxa, but also the 

116 proportion of the variants and sub-strains (Yilmaz et al., 2021). Experimental evolution 

117 approaches with Escherichia coli have revealed that its evolutionary adaptation to the mouse 

118 gut selects for mutations related to changes in metabolic capabilities (Barroso-Batista et al., 

119 2014; Conway and Cohen, 2015; Giraud et al., 2008; Lescat et al., 2017; De Paepe et al., 

120 2011), and that those mutational patterns are shaped by gut ecology (Barroso-Batista, Pedro 

121 et al., 2020). In humans, different dietary habits have been associated with genetic diversity 

122 in Prevotella copri, leading to genetic variants with functional consequences, namely strains 

123 from non-Western subjects showing higher potential for complex plant fiber-degradation 

124 (Fehlner-Peach et al., 2019; De Filippis et al., 2019). Also in humans, there is evidence that 

125 gut microbes can accumulate genetic differences over host-relevant timescales (Garud et al., 

126 2019; Zhao et al., 2019). However, given the complexity of monitoring human gut microbiota 

127 populations, it is difficult to accurately measure intra-species evolutionary dynamics and 

128 determine the contribution of emergence of de novo mutations versus invasion of new strains 

129 due to inter-host transmission. Furthermore, possible strong colonization bottlenecks, and 

130 non-controlled factors, make the understanding of the mechanisms shaping intra-species 

131 genetic diversity within human hosts difficult.

132 We reasoned that the microbiota-dependent functional consequences observed in 

133 diet-induced dysbiosis could be caused not only by changes in microbiota composition and in 

134 gene/metabolic regulation, but also by evolutionary changes, via the emergence of de novo 

135 mutations, which can lead to intra-species changes. To address this hypothesis, we 

136 determined the effects of diet on mutational changes in genes at the single species level by 

137 monitoring evolutionary adaptation to the gut of mice undergoing different dietary regimens. 

138 We focused on Bacteroides thetaiotaomicron (hereafter referred as B. theta) due to its 

139 predominance in the mammalian gut. B. theta is a strict anaerobe, and is among the fiber 
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140 degrading Bacteroides that in the absence of dietary plant polysaccharides can consume 

141 host glycans (Salyers et al., 1977a; Sonnenburg et al., 2005). This bacterium shows 

142 phenotypic plasticity by gene and metabolic regulatory mechanisms, which enable it to 

143 prioritize usage of carbon sources (Schwalm et al., 2017), and to consume host glycans only 

144 in the absence of dietary complex polysaccharides (Kashyap et al., 2013; Martens et al., 

145 2008). By following the evolutionary dynamics of B. theta over a 3-month timescale, we 

146 observe genetic signatures resulting from diet-specific evolution, fluctuating rapidly as the 

147 diet consumed by the mice alternates from high in fat and sugar and low in fiber (Western-

148 style Diet (WD)) to standard high-fiber chow diet (Standard Diet (SD)). We show that 

149 adaptation under WD specifically favors the emergence of mutations advantageous in 

150 consumption of mucin O-glycans. This supports the hypothesis that intra-species evolution 

151 can influence the microbiota-dependent phenotypes observed upon dietary changes. Finally, 

152 through an integrative multi-omic analysis, combining metabolomic and microbiota profiling 

153 with the B. theta mutational profile, we show that intra-species mutational diversity is a 

154 powerful biomarker of dietary differences between individuals.

155

156 RESULTS

157 B. theta evolves rapidly to the mammalian gut under different diets

158 We studied evolutionary adaptation dynamics of a prevalent member of the gut microbiota, 

159 B. theta (VPI-5482) (Consortium et al., 2010; Qin et al., 2010), to the mouse gut in animals 

160 fed with different diets. To do this, antibiotic-treated mice, susceptible to colonization, were 

161 gavaged with a 1:1 mixture of B. theta carrying either mCherry or sfGFP constitutively 

162 expressed (Whitaker et al., 2017), enabling us to monitor frequency changes of these 

163 markers as a proxy for evolutionary adaptation (Barroso-Batista et al., 2014; Hegreness et 

164 al., 2006). Mice were stably colonized with B. theta 48 hours after the gavage (Table S1). At 

165 that point the mice were either kept on the same diet (i) SD: rich in microbiota-accessible 

166 carbohydrates (i.e. plant polysaccharides and fibers) and low in fat and simple sugars; or the 
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167 diet was changed to (ii) WD: rich in fat and simple sugars, but poor in microbiota-accessible 

168 carbohydrates (Fig. 1A). As expected, mice on WD gained more weight, had larger fat pads, 

169 and tended to have increased inflammation (Fig. S2A-C). Changes in microbiota assessed 

170 through 16S rRNA amplicon sequence variants (ASVs) revealed a tendency for lower relative 

171 levels of phylum Bacteroidetes in the WD group, and higher levels of phylum 

172 Verrucomicrobia, which includes the mucus degrader specialist Akkermansia (Fig. S2D), 

173 consistent with previous observations (Carmody et al., 2015; Desai et al., 2016) 

174 We observed rapid shifts in the frequency of the fluorescent markers of B. theta 

175 populations in fecal samples from mice fed with either SD (e.g., lines SD2/6/9/14, Fig. 1B, 

176 see also Fig. S1, left panel) or WD (e.g., WD2/6/8/11, Fig. 1C, see also Fig. S1, center 

177 panel). The rapid shifts suggest that the accumulation of adaptive mutations can occur as 

178 quickly as 2 weeks. In both the SD and WD groups, the changes in fluorescent markers of B. 

179 theta populations in certain mice are consistent with clonal interference (CI): quick reversals 

180 in marker frequency indicates that distinct beneficial mutations appeared in either 

181 background with emerging adapted clones competing for fixation (e.g., SD6 and WD8, Fig 

182 1B-C). Absolute abundance of B. theta (CFUs/g) did not change significantly throughout the 

183 experiment (Table S1), indicating that the strong shifts in marker frequency were due to the 

184 acquisition of beneficial mutations rather than to population bottlenecks caused by potential 

185 deleterious effects of the gut environment.

186 To confirm that the changes in marker frequency were indeed caused by evolutionary 

187 adaptation, we asked if populations that evolved in either diet (SDevol or WDevol) have higher 

188 fitness than the ancestral strain (ANC) when competing for colonization. We observed that 

189 evolved populations largely outcompete ancestral clones in newly colonized mice, 

190 irrespective of the dietary regime used during competitions (Fig. 1D-E, Fig. S2E-H). These 

191 results confirmed that B. theta had acquired strong-effect mutations that are adaptive in the 

192 mouse gut independently of the diet. To determine if B. theta had acquired diet-specific 

193 adaptive mutations, we next competed SDevol against WDevol populations on each diet. Most 

194 SDevol populations outcompeted WDevol populations when mice were fed SD (Fig. 1F, 
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195 frequency of SDevol in Fig. S2I-L, left panels), but were outcompeted by WDevol when mice 

196 were fed WD (Fig. 1F, frequency of WDevol in Fig. S2I-L, right panels), confirming that B. 

197 theta does accumulate diet-specific beneficial mutations during colonization of the mouse 

198 gut.

199

200 Alternating diet leads to fluctuating selection

201 We next sought to analyze a more realistic and complex regimen, where diet changes across 

202 time. This was accomplished by alternating each week between standard and western diets, 

203 i.e., Alternation Diet (AD) group in Fig. 1A. With this regimen we observed strong fluctuation 

204 of the neutral markers in response to the weekly changes in diet (Fig. 1G, see also Fig. S1, 

205 right panel). For example, lineages AD1 and AD4 show clear fluctuations, where markers 

206 alternate in dominance reaching frequencies 100% in one week and 0% in the next. We 

207 quantified the shifts in marker frequency across all 3 dietary regimes by calculating Marker 

208 frequency (tx=0-tx=-1) (Fig. 1H) and observed that AD causes stronger marker shifts than the 

209 SD and WD groups (Fig.1H - insert, AD vs. SD **p = 0.0015; AD vs. WD ***p = 0.0006; SD 

210 vs. WD non-statistically significant, p = 0.9240; one-way ANOVA with Tukey's multiple 

211 comparisons test). 

212 All together these results provide evidence of fast evolutionary adaptation of B. theta 

213 to the mouse gut in all three nutritional regimens, with a higher number of fluctuations in 

214 marker frequency in the AD regimen, indicating the emergence of diet-specific beneficial 

215 mutations.

216

217 Mutations underlying B. theta evolutionary adaptation in different diets

218 To identify mutations potentially selected in the different diets, we sequenced populations of 

219 B. theta by pooling clones sampled from each mouse after 12 weeks of colonization. We 

220 determined de novo mutations by mapping the sequencing reads against our assembled 

221 ancestral B. theta reference (see methods).
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222 The number of mutations accumulated in most B. theta populations was between 20 

223 and 70 mutations per mouse (Fig. 2A, Z-axis – bars and Table S2). Interestingly, three of the 

224 evolved populations (mice SD1, SD2 and WD3, Fig 2A) had much higher numbers of 

225 mutations, harboring 274, 230 and 156 mutations, respectively. This is likely due to the 

226 emergence of clones carrying mutations that increase the mutation rate (mutators). Indeed, 

227 in population SD1, a mutation in the promoter region of the mutS gene, a known target for 

228 mutator phenotypes (Radman et al., 1995), was detected at 0.7% frequency. Additionally, the 

229 majority of the mutations in mice SD1, SD2 and WD3 are at low frequency, as is often 

230 observed for the mutations arising in mutator backgrounds (Giraud et al., 2001; Ramiro et al., 

231 2020). Specifically, 250 mutations in SD1, 205 mutations in SD2, and 86 mutations in WD3 

232 are below 2% (Fig. 2A, Y-axis – dots). 

233 Among all mutations analyzed from all sequenced populations, single-nucleotide 

234 polymorphisms (SNPs) are the most prevalent, followed by small insertions and deletions 

235 (indels) (Fig. S3A).  

236 As adaptive mutations appearing in different mice emerged independently, a proxy for 

237 bona fide adaptive mutations is parallel acquisition. We identified 73 parallel mutations (Fig. 

238 2B and Table S2), defined as any gene or intragenic region (mutational target) carrying 

239 mutations in populations from at least two mice, and with the sum of mutation frequencies in 

240 each target of 5% in at least one mouse. As most mutations identified fit our criteria of 

241 parallel mutations, the majority of mutations are likely adaptive (Fig. 2B and S3B). No bias 

242 regarding genome position was observed for parallel mutations, as these are scattered 

243 across the bacterial genome of the populations from all groups of mice (Fig. 2C). These 

244 results suggest that B. theta has a large target for beneficial mutations when adapting to the 

245 mouse gut ecosystem.  

246

247 Alternation diet leads to increased intra-species genetic diversity in B. 

248 theta 
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249 To understand the effect that diet has on intra-species diversity in B. theta, we compared the 

250 frequencies of parallel mutations of the different groups and observed that the AD shows a 

251 tendency to have lower maximum frequencies than SD (Fig. 3A) and is lower than WD (AD 

252 vs. WD *p = 0.0226; one-way ANOVA with Tukey's multiple comparisons test). Interestingly, 

253 the Shannon index (here used to measure intra-species richness) for parallel mutations is 

254 significantly higher in the AD group than in WD and SD groups (Fig. 3B, AD vs. *p = 0.0240; 

255 AD vs. WD **p = 0.0044; SD vs. WD non-statistically significant, p = 0.7636; one-way 

256 ANOVA with Tukey's multiple comparisons test), indicating that the AD regimen supports 

257 higher polymorphism.

258 Next, to identify potential diet-specific mutational targets we used a generalized linear 

259 model (GLM) to identify mutations differentially prevalent across dietary regimens (p0.05 

260 and false discovery rate (FDR) of q0.05), and/or differentially enriched in a specific dietary 

261 regimen (pairwise post-hoc tests between regimens per mutational target) (Fig. 3C). 

262 Mutations that did not pass our criteria for diet-specific selection (GLM p0.05), are listed in 

263 Table S2. Mutations, which are present in a majority of the mice, irrespectively of the diet, 

264 are plausibly generally adaptive mutations to the mouse gut. The occurrence of general 

265 evolutionary adaptation to the gut is consistent with the higher fitness observed in 

266 populations evolved under SD or WD in comparison with the ancestral strain, regardless of 

267 diet (Fig. 1D-E).

268 Regarding the diet-specific mutations (Fig. 3C), BT1754 was identified as a single 

269 mutational target exclusively in mice from the SD group. This gene encodes a transcriptional 

270 regulator previously shown to be induced by the presence of plant dietary polysaccharides 

271 (Lynch and Sonnenburg, 2012). In contrast, two of the four mutational targets enriched in the 

272 WD group (BT4246 and BT4247) are SusCD-like genes, which are part of polysaccharide 

273 utilization locus (PUL) 78 involved in degradation of mucin O-glycans from the host (Kashyap 

274 et al., 2013). Additionally, mutations in the intergenic region between genes involved in 

275 capsular polysaccharide biosynthesis (BT1725/1726) were enriched in the WD group; 
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276 expression of this locus has been previously observed to be among the dominant capsular 

277 loci in the low-fiber diet (Porter et al., 2017). These mutations enriched in either diet likely 

278 result from B. theta adaptation to the general gut environment. 

279 We also identified 3 mutational targets present in both the SD and AD groups 

280 (BT0623, BT0370 and BT0317), and one present in both the WD and AD groups (BT3702). 

281 Mutations in these targets are likely to be more beneficial in either SD or WD diets, 

282 respectively, but are still being maintained in the AD regimen, where the mice are 

283 sequentially exposed to both diets. 

284 Interestingly, we found more mutations specific to the AD regimen (6) than mutations 

285 specific to SD and WD (1 and 4, respectively) (Fig. 3C). These AD-specific targets likely 

286 contain evolutionary adaptations to a fluctuating regimen, and again include genes involved 

287 in the utilization of polysaccharides, in this case both, dietary and host glycans. Overall, 

288 these results show that the fluctuating diet favors maintenance of a higher intra-species 

289 polymorphism among the newly emerged genetic variations. 

290

291 B. theta evolution is more strongly influenced by the metabolome than by 

292 the microbiota composition

293 We next wanted to determine how different dietary regimens affect the interplay between B. 

294 theta evolution, gut microbiota composition, and the metabolic environment in the gut. We 

295 analyzed the microbiota compositions and the metabolite composition in fecal samples from 

296 the last day of the experiment. We observed a tendency towards lower relative levels of 

297 members of the phylum Bacteroidetes and higher levels of phylum Verrucomicrobia in the 

298 microbiota of mice from the WD group than with the SD and AD groups (Fig. 4A, Table S4). 

299 In contrast, significant differences in metabolites were observed between the groups. In 

300 particular, the levels of the major fermentation products of the microbiota SCFAs (namely, 

301 acetate and propionate) and the majority of simple sugars present in the WD diet (e.g., 

302 sucrose and its derivative, fructose), were drastically different in the WD group compared 
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303 with SD and AD groups, with SCFAs being lower and these sugars higher in WD (Fig. 4B). 

304 Taurine, an important component of bile acids is also higher in the WD (Fig. S4A-C and 

305 Table S3, shown together with remaining metabolites). Bile salts are necessary for fat 

306 digestion; the increase in bile acids due to the high fat diet was associated with promoting 

307 gut colonization by pathogenic bacteria like Salmonella Typhimurium (Wotzka et al., 2019).

308 To identify significant correlations among mutational profiles, microbiota compositions 

309 or metabolomes, we performed Procrustes analysis based on principal component analysis 

310 (PCA) of Aitchinson distances for each dataset - mutations, metabolites and microbiota 

311 composition (Fig. 4C-E, PCA for each dataset are presented in Fig. S5A-C). This analysis 

312 detected a significant correlation between the mutational profile and the metabolome, but not 

313 between the mutational profile and the microbiota or between the metabolome and the 

314 microbiota (Fig. 4F). Similar results were obtained with a Mantel test (Fig. S4D). Therefore, 

315 both analyses provide support for a strong correlation between the metabolome and the 

316 mutations, greater than the correlation between the metabolome and the microbiota 

317 compositions.

318 We next used the tool HallA (Hierarchical All-against-All association testing, 

319 (Rahnavard et al., 2017)) to identify correlations between features of the mutational profile, 

320 microbiota and metabolomes. The results from this analysis were then used to create the 

321 correlation network (Fig. 4G). The network recapitulates some expected associations, such 

322 as (i) the positive correlation between frequency of mutations in the SusC/D-like genes 

323 enriched in the WD regimen, BT4246-7, with the concentration of simple sugars present in 

324 WD (sucrose and fructose), (ii) the negative association between these mutational targets 

325 and metabolites enriched in SD diet (arabinose or xylose); (iii) the positive associations 

326 between glutamate and mutations in BT0317 and BT0370, which are enriched in SD and AD 

327 regimens, (the BT0370 gene has homology to galactokinase, an indication that it could be 

328 involved in galactan metabolism, a polysaccharide present in SD);  and (iv) the positive 

329 correlations between taurine and mutations in the intergenic region BT1725/BT1726 involved 

330 in capsular polysaccharide biosynthesis (Porter et al., 2017), which are enriched in WD. 
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331 Interestingly, we also found associations that could not be predicted from the independent 

332 analysis of each dataset, e.g., (i) negative correlations between frequency of mutations in 

333 BT3045 and tyrosine, or BT0172/BT0173 and creatine; and (ii) the positive correlations 

334 between BT3045 (predicted gene for arabinan degradation (Martens et al., 2011)) and 

335 Blautia. Importantly, consistent with the Procurstes analysis, this correlation network also 

336 supports a stronger correlation of mutations with metabolites than of mutations with 

337 microbiota, as it has a higher number of network edges between the mutational profile and 

338 metabolome (36 edges) than between mutations and the microbiota (4) or between 

339 microbiota and the metabolites (17) (Fig. 4G). Overall, these results indicate that bacterial 

340 evolution is more strongly influenced by the metabolite environment rather than by the gut 

341 microbiota composition. 

342

343 Mutational targets are good predictors of host diet

344 The gut microbiota and the metabolome are often mined for their potential as biomarkers 

345 (Krautkramer et al., 2021; Manor et al., 2020). However, given the limited data available on 

346 genetic diversity within individual microbiota species, the predictive power of within-species 

347 mutational profiles has been less explored. To determine the power of genetic diversity of B. 

348 theta to predict the different dietary regimens in comparison with the predictive power of 

349 microbiota and/or metabolome, we used DIABLO (Data Integration Analysis for Biomarker 

350 discovery using Latent variable approaches for ‘Omics studies (Singh et al., 2019)), which is 

351 based on sparse generalized canonical correlation analyzes. We carried out an integrative 

352 analyzes of the mutational profile, the metabolome and the microbiota and tested the ability 

353 of each dataset to distinguish between the different dietary regimens. DIABLO identified the 

354 three main latent variables, the first two are shown in Fig. 5A-C as an ordination plot (for 

355 variable 3 see also Fig. S5E). Interestingly, the mutation dataset separated the different 

356 dietary regimens into three clusters (Fig. 5A), whereas metabolites strongly separate WD 

357 from AD and SD, but not the latter two (Fig. 5B), likely a consequence of the fact that the AD 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



14

358 samples were from a time point when the AD group was on SD diet. Moreover, while 

359 microbiota composition clusters the AD samples tightly, the clustering of SD and WD is poor, 

360 thus causing a poor overall separation among the three dietary regimens when using the 

361 microbiota dataset (Fig. 5C).

362 We then evaluated the ability of the DIABLO model to correctly predict the dietary 

363 regimen of each sample based on the separate datasets. We obtained cross-validation error 

364 rates for the 3 datasets, for which lower error rates indicate a better prediction (Fig. 5D). 

365 Interestingly, the mutation dataset is the only one that always achieved a misclassification of 

366 ≤20% for all three dietary regimes, being the best at identifying SD samples and as good as 

367 metabolites at identifying WD samples. Conversely, while the microbiota dataset could better 

368 identify AD samples, it was the poorest for the other two regimens, with error rates 40% 

369 (Fig. 5D). The fact that the mutation dataset was a good diet predictor is further support for 

370 the existence of a specific genetic signature for AD, also suggested by the larger number of 

371 AD-specific mutations identified (Fig. 3C). Taken together, our results support the conclusion 

372 that diet can leave specific genetic signatures in B. theta and provide evidence that intra-

373 species mutational diversity can be a powerful biomarker of dietary differences between 

374 individuals, being at least on par with the microbiota composition and the metabolome. 

375

376 Weekly nutritional changes drive genetic fluctuation in B. theta 

377 Our identification of diet-specific mutations at 12 weeks shows that diet shapes the evolution 

378 of B. theta in the mouse gut (Fig. 3). Since we observed strong fluctuation of the fluorescent 

379 marker under AD dietary regimen (Fig. 1G-H) we hypothesized that the weekly changes in 

380 diet could cause fluctuating selection on mutations, i.e., differential benefits in the two diets 

381 alternated in the AD group. To test this hypothesis, we performed time-course population 

382 WGS for the two populations from the AD group that showed the most intense fluctuation in 

383 marker dynamics, i.e., AD1 and AD4. We sequenced populations from Day 0 of evolutionary 

384 experiment, and each week on Day 6 post diet shift, from week 2 until the end of the 
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385 experiment. Fig. 6A shows the frequency of all mutations across time. We found mutations 

386 that fluctuated up to 4-5 times, these being the ones that displayed the stronger absolute 

387 changes in frequency (Fig. S6A, left panel).

388 Among the mutations fluctuating more strongly we highlight two mutational targets 

389 detected in both mice: BT0867 (encoding a SusC-like protein) and BT2689 (encoding a 

390 hypothetical protein) (Fig. 6A, colored lines, Table S5). The mutation in BT0867 was first 

391 detected on week 3, under a western diet week (ADWD) and fluctuated in frequency between 

392 >80% in ADWD weeks and <10% on ADSD weeks, reaching frequencies of 100% in the former 

393 and becoming undetectable in the latter (Fig. 6A). The mutations in the gene BT2689 

394 showed very similar dynamics, but with the frequency of the mutations peaking on ADSD (Fig. 

395 6A). This analysis confirms that changes in diet can lead to strong fluctuations in the 

396 frequency of mutations.

397 To understand if weekly dietary changes lead to fluctuations in the gut metabolome 

398 and microbiota in a similar way, we analyzed metabolites and the microbiota composition of 

399 AD1 and AD4 samples from week 4 until the end of the experiment. Similar to mutations, it 

400 was possible to detect fluctuations for metabolites and microbiota composition (Fig. 6B-D 

401 and S6).

402 The metabolites showing the strongest fluctuation patterns were sugars (Fig. 6B). 

403 Their dynamics clearly reflects the diet consumed in the week analyzed, with sugars derived 

404 from polysaccharides, which are part of SD composition (e.g., arabinose/arabinan, 

405 xylose/xylan and galactose/galactan), peaking on ADSD week, and simple sugars present in 

406 WD (e.g., sucrose and its derivative fructose), peaking on ADWD week (Fig. 6C). Levels of 

407 glucose did not fluctuate significantly through the entire course of the experiments, perhaps 

408 because its concentration is regulated by the host. Among the SCFAs, acetate showed the 

409 strongest oscillation pattern and, together with the organic acid galactonate (abundant 

410 building block in fiber polymers), peaked in the ADSD week (Fig. 6C, for remaining 

411 metabolites Fig. S6B-C and Table S3). Regarding the microbiota in AD4, Verrucomicrobia 
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412 phylum (which include the ASVs corresponding to Akkermansia) fluctuated with peaks in 

413 frequency corresponding to the ADWD weeks (Fig. 6D, for individual ASVs see Table S4).

414 Next, to compare the rate of fluctuation across the different datasets (mutations, 

415 metabolites and microbiota composition) each of the datasets was first filtered to reduce 

416 sparsity (see methods). We then applied the centred log ratio (CLR) transformation to each 

417 of the datasets to account for compositionality (Fernandes et al., 2014; Quinn et al., 2019). 

418 Using this data we calculated the Aitchinson distance between consecutive time points for 

419 each mouse. The distance between consecutive time points was the highest for mutations, 

420 followed by metabolites and 16S variants (Fig. 6E and Fig. S7). Furthermore, PCAs 

421 generated based on the Aitchinson distance for each dataset, showed that for mutations and 

422 metabolites the time points clearly cluster according to the diet consumed in the indicated 

423 week (Fig. 6F). Conversely, for microbiota dataset there is no clear separation between ADSD 

424 and ADWD weeks (Fig. 6F, right panel). Therefore, this analysis shows that mutations and 

425 metabolites are subject to stronger fluctuation than microbiota composition. 

426 Overall, our results demonstrate that changes in diet lead to rapid changes in the 

427 metabolic environment. Interestingly, these fluctuations in diet lead to even clearer 

428 evolutionary dynamics observed at the gene level, supporting that the mutational landscape 

429 is a reflection of the host diet. Additionally, these results suggest that mutations follow diet 

430 fluctuations more closely than the microbiota composition dynamics.       

431

432 Western-style diet selects for fluctuating mutations involved in 

433 consumption of mucin O-glycans

434 Our results showing fluctuations in the frequency of mutations indicate that the fitness effect 

435 of mutations can change with weekly dietary changes. We analyzed the frequency of the 

436 highly fluctuating mutational targets BT0867 and BT2689 on the last day of the experiment 

437 (week 12). Intriguingly, mutations in BT0867 were highly prevalent in all the groups under 3 

438 regimens (SD, WD and AD), reaching up to 60% in frequency (Fig. 7A). This was in contrast 
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439 with the mutations in BT2689, which peaked in the ADSD weeks and at 12 weeks was 

440 detected only in the SD and AD groups (Fig.7A, Table S2). Detailed analysis of the different 

441 mutations in BT0867 at the last time point of the experiment revealed 5 different alleles. 

442 Interestingly, out of the five, the only allele enriched in the AD group is the one generating 

443 the amino acid substitution T756I (Fig. 7B), which is the SNP detected in BT0867 that 

444 fluctuates over time in both AD1 and AD4 populations (Fig. 6A). Importantly, the same allele 

445 is also enriched in the WD group. However, the R988C substitution, is also prevalent in WD 

446 group (Fig. 7B). 

447 Because the allele T756I peaks in the ADWD weeks, and is highly prevalent in the WD 

448 group, we hypothesized that this mutation could be beneficial under the WD conditions. As 

449 the gene BT0867 is part of PUL12, which has been associated with the utilization of mucin 

450 O-glycans (Bjursell et al., 2006), we reasoned that this mutation could be benefiting B. theta 

451 by optimizing its capacity to consume these compounds. To test this hypothesis, we took 

452 advantage of the strong fluctuation of the T756I allele throughout the experiment, and 

453 isolated clones from the AD1 and AD4 populations at time points of extreme frequencies of 

454 T756I; we isolated 8 clones at week 4, when frequency of this allele is ~0% (ADSD), and 8 

455 clones at week 5, when its frequency is ~100% (ADWD). Then the phenotype of these clones 

456 with respect to O-glycan consumption was tested in laboratory cultures. We used a modified 

457 carbohydrate-free medium, which enables testing growth enhancement by carbohydrate 

458 supplementation. We tested the isolated clones in competition against the ancestral clone 

459 (ANC), either in medium with no added carbohydrate or in medium supplemented with either 

460 glucose or purified mucin O-glycans. We observed that neither the ADSD nor ADWD clones 

461 showed advantage against ANC in medium supplemented with glucose or in medium with no 

462 carbohydrates added. However, the ADWD evolved clones outcompeted the ANC in medium 

463 supplemented with purified mucin O-glycans (Fig. 7C). Moreover, ADWD clones showed a 

464 higher growth rate than the ADSD clones when grown in the presence of purified mucin O-

465 glycans, but not when supplemented with glucose or when no carbohydrate was added to 

466 the medium (Fig. 7D). The growth advantage of the evolved clones in the presence of O-
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467 glycans indicates that these clones might be poised for better for consumption of the mucus 

468 layer, a phenotype previously observed for B. theta in animals under WD (Sonnenburg et al., 

469 2005). 

470 The results showing that the T756I allele of BT0867 strongly fluctuates in frequencies 

471 upon changes from the ADWD week to the ADSD weeks demonstrate that B. theta mutations 

472 selected during the AD regimens can have different fitness effects in the two diets. Moreover, 

473 our results indicate that the T756I allele is strongly beneficial in WD, where utilization of 

474 mucus O-glycans is expected to be advantageous, a phenotype that is consistent with its 

475 advantage in O-glycan utilization (Fig. 7C and D). Therefore, our results support the notion of 

476 selection for de novo mutations (i.e., emergence of genetic diversity) as an additional 

477 mechanism to explain microbiota-dependent phenotypic alterations observed upon changes 

478 in diet.

479

480 DISCUSSION

481 Host diet is an important factor influencing the functions and composition of the gut 

482 microbiome (Sonnenburg and Sonnenburg, 2014). Diets low in complex polysaccharides, 

483 such as the WD used here, lead to microbiota-dependent negative effects on the host, 

484 including decreased thickness of the protective mucus layer and increased susceptibility to 

485 infection and inflammation (Bäckhed et al., 2005; Desai et al., 2016; Hryckowian et al., 2018; 

486 Wotzka et al., 2019). Many studies have shown that such consequences of diet-induced 

487 dysbiosis relate to impacts in gut ecology characterized by changing both the microbiota 

488 composition and the expression of genes by members of this community (Carmody et al., 

489 2015; Desai et al., 2016; Martens et al., 2008, 2011; Sonnenburg et al., 2005; Turnbaugh et 

490 al., 2008). These mechanisms are not mutually exclusive, and both change the gut metabolic 

491 environment (Barroso-Batista, Pedro et al., 2020; Desai et al., 2016). The metabolic 

492 environment in turn changes the fitness landscape experienced by the gut commensals and 

493 can change their evolutionary path. Evidence that evolution by de novo mutations occurring 
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494 during bacterial colonization of the gut is just now starting to emerge (Fehlner-Peach et al., 

495 2019; De Filippis et al., 2019; Garud et al., 2019; Yilmaz et al., 2021; Zhao et al., 2019). 

496 Here we investigated how diet shapes the evolution of B. theta and the emergence of 

497 intra-species genetic diversity in this prevalent member of the microbiota. We found that this 

498 bacterium evolves quickly to the mouse gut and that different dietary regimens leave a 

499 distinct genetic signature. Our approach illustrates the power of experimental evolution with 

500 trackable microbiota members to understand the microbiota-mediated mechanisms involved 

501 in functional alterations observed in the mammalian gut in response to environmental 

502 perturbations. Our findings show that intra-species evolution can happen within host-relevant 

503 timescales in response to dietary changes.

504 We observed that B. theta accumulated a similar number of parallel mutations under 

505 SD and WD. Competitive fitness assays in newly colonized mice showed that evolved clones 

506 outcompete their ancestors, confirming that those mutations are beneficial mutations. 

507 Population sequencing of the evolved clones revealed the main mutational targets in both 

508 groups. This supports the notion that many mutations constitute diet-independent 

509 evolutionary adaptations, which is likely a consequence of B. theta being a human isolate, 

510 and therefore mouse gut presents a novel environment for it. Interestingly, when evolved 

511 populations were competed against each other, the SDevol populations outcompeted the 

512 WDevol in mice fed SD, but lost the competition when mice were fed WD. This indicates that 

513 B. theta did not acquire only diet-independent mutations, but also diet-specific adaptive 

514 mutations. Accordingly, we identified mutational targets that were selected only in SD or only 

515 in WD. As the majority of mutations identified are non-synonymous SNPs, which are less 

516 likely to lead to loss of functions than deletions or stop codons, we reason that such 

517 mutations are likely to result in changes of gene expression or protein activity. These diet-

518 specific mutations include mutations in genes that were previously shown to be important 

519 under conditions that are relevant for either the SD or WD diet. The BT1754 gene mutated in 

520 SD is essential for growth on fructans (fructo-oligosaccharide, inulin and levan) present in 

521 plant fibers (Deutschbauer and Chen, 2021; Sonnenburg et al., 2010). Two of the mutational 
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522 targets enriched in WD, SusCD-like loci BT4246/7, belong to the polysaccharide utilization 

523 loci PUL78, previously described as one of the PULs involved in consumption of host mucin 

524 O-glycans (Kashyap et al., 2013; Martens et al., 2008). Gut mucus has high polysaccharide 

525 content, with mucin O-glycans presenting up to 80% of total biomass (Johansson et al., 

526 2013). However, only a minority of gut microbiota species is able to use it as a nutrient 

527 source (Hoskins and Boulding, 1981; Png et al., 2010), with B. theta being one of them 

528 (Sonnenburg et al., 2005). These glycans are not B. theta´s primary nutrient choice, but 

529 rather a last resort (Kashyap et al., 2013; Pudlo et al., 2015). Therefore, the appearance of 

530 mutations in SusC-like (BT4247) and SusD-like (BT4246) genes suggests that an 

531 environment poor in polysaccharides, creates a selective pressure for B. theta to evolve 

532 towards increased host mucin consumption. Additionally, among the targets enriched in WD 

533 we identified mutations targeting a locus involved in capsular polysaccharide biosynthesis 

534 (BT1725/1726), previously shown to be one of dominant capsular loci under low-fiber diet 

535 (Porter et al., 2017). Altogether, the appearance of these mutations indicates that B. theta 

536 evolves to the metabolically distinct gut environment generated by SD and WD diets. Some 

537 of the diet-specific mutations selected are in genes of unknown function, but the fact that 

538 these genes are under selection in these experiments strongly supports their role in gut 

539 colonization. Understanding the factors that selected for mutations in these targets will help 

540 identify the functions encoded by them. 

541 Our results are consistent with previous findings that metabolites and microbiota 

542 composition are both affected by diet. We found new associations between mutations in 

543 certain genes and metabolites and/or microbiota members which were enriched in the same 

544 diet where these mutations were selected. This is evident for correlations between mutations 

545 and diet-specific sugars, as well as for certain mutations and Akkermansia, a microbiota 

546 mucus degrader often seen to expand in diets low in fiber (Desai et al., 2016). We also 

547 observed correlations between metabolites and microbiota composition, which are consistent 

548 with previous studies showing that metabolic changes induced by diet shifts lead to changes 

549 in microbiota composition (Desai et al., 2016). Interestingly, the overall correlation between 
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550 mutations and metabolites is stronger than those between metabolites and microbiota 

551 composition, or between mutations and microbiota. These results show that diet and the gut 

552 metabolic environment shape the adaptive landscape of B. theta more than the microbiota 

553 composition.

554 Analyzing the effect of periodic alterations in diet (AD group) allowed us to determine 

555 how evolution of B. theta proceeds in a more realistic scenario, where the host experience 

556 periodic changes in diet. We observed that the AD regimen selects for a similar number of 

557 targets as did continuous exposure to either SD or WD. However, maximum frequencies 

558 reached by prevalent mutants are smaller in the AD group than in SD or WD, revealing less 

559 population dominance in AD. This together with a higher level of intraspecies genetic 

560 richness in the AD group shows that this group maintains a richer genetic repertoire, and 

561 thus demonstrates the importance of dietary alternation in maintaining intra-species diversity. 

562 Importantly, the number of diet-specific targets of selection was higher in the AD 

563 regimen than in SD and WD, suggesting that alternations in diet require different 

564 mechanisms and introduces different specific selective pressures. This was particularly 

565 obvious when strong fluctuations in the frequency of mutations were observed. A particular 

566 mutation showing strong fluctuations in AD is a single SNP in the gene BT2689, coding for a 

567 hypothetical protein. The function of BT2689 seems to be strictly related to consumption of 

568 resources from SD, since mutation in this target never appeared in mice on WD. The other 

569 mutation showing strong fluctuation in AD is in BT0867, a gene previously shown to be 

570 induced by mucin O-glycans (Bjursell et al., 2006), where a high prevalence of mutations 

571 occurred across dietary groups. Importantly, the observed fluctuations in mutations can have 

572 a functional impact as we show that the fluctuating clones with the SNP T7561 in BT0867 

573 peaking in ADWD have a growth advantage in mucin O-glycans. This enrichment for mutants 

574 with enhanced growth in mucin O-glycans in ADWD weeks, correlates well with other studies 

575 describing the effects of WD in the decrease in thickness of the mucus barrier (Desai et al., 

576 2016; Sonnenburg et al., 2005). Therefore, we reason that selection for mutants with 

577 enhanced mucus degradation capabilities is one of the mechanisms involved in the observed 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



22

578 negative effect of WD dysbiosis. More generally, we propose that in responses to 

579 environmental perturbations, microbiota functions can change either by the previously 

580 described mechanism of gene regulation (Desai et al., 2016), or by rapid selection of 

581 mutations. Importantly, changes resulting in mutations will have more permanent 

582 consequences than the responses at the level of gene regulation, as the later are reversible, 

583 while mutations are not. Therefore, the results obtained here with the AD, showing increased 

584 richness for mutational targets and fluctuation of mutations with the weekly changes in diet, 

585 demonstrate that periodic variations in dietary regimens are important to avoid irreversible 

586 fixation of specific mutations and to enable maintenance of a higher genetic polymorphism. 

587 Therefore, one can in principle use diet supplementations to manipulate intra-species genetic 

588 diversity. Overall, these results suggest that the AD regimen selects for a specific genetic 

589 signature, resulting in functionally distinct evolutionary paths. Moreover, the results from the 

590 weekly alterations in diet revealed stronger fluctuations in mutations than in microbiota 

591 composition, thus highlighting the importance of investigating potential changes in functional 

592 properties of the microbiota, even under conditions where alterations on the species 

593 composition are not obvious. 

594 The observed fluctuations in frequencies of mutations correlating with periodic 

595 alternations in diet in the AD group is consistent with the occurrence of antagonistic 

596 pleiotropy (Van den Bergh et al., 2018). A mutation under antagonistic pleiotropy will 

597 increase in frequency in a week where diet favors it, with an expansion of the linked 

598 fluorescent marker, but will decrease in frequency when the diet changes as the mutation 

599 becomes temporally disfavored (Chen and Zhang, 2020).

600 Our findings showing that B. theta undergoes fast evolutionary adaptation to the 

601 mouse gut are consistent with studies on the evolution of E. coli in the mouse gut (Barroso-

602 Batista et al., 2014, 2015; Barroso-Batista and Pedro et al., 2020; Fabich et al., 2011; 

603 Ghalayini et al., 2019; Giraud et al., 2001, 2008; Leatham et al., 2005; Lescat et al., 2017; 

604 Lourenço et al., 2016; De Paepe et al., 2011; Poulsen et al., 1995; Welling et al., 1980), 

605 where selection of mutations related to metabolic capabilities also occurs (Barroso-Batista et 
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606 al., 2014; Sousa et al., 2017). While host immunity can affect E. coli evolution in the mouse 

607 gut (Barroso-Batista et al., 2015), the pattern of E. coli evolution more strongly reflects the 

608 gut metabolic environment, which in turn is shaped by the gut ecology (Barroso-Batista and 

609 Pedro et al., 2020). The studies with E. coli raised the question of whether the quick 

610 evolution of E. coli to changing metabolic environments would be possible only given the 

611 genetic and metabolic versatility of E. coli, a facultative anaerobe capable of fermenting 

612 diverse sources of simple compounds as carbon and nitrogen sources. Our results, beyond 

613 addressing the role of diet in microbiota adaptation, show that quick evolution also occurs in 

614 B. theta, a more abundant and well-adapted strict fermentative anaerobe member of the 

615 microbiota, specialized in consumption of complex polysaccharides. By studying the 

616 evolution of B. theta our results show that B. theta indeed has a high degree of genetic 

617 versatility and metabolic plasticity. Therefore, our current findings in B. theta are likely 

618 applicable to other members of the gut microbiota and should inspire future studies to assess 

619 the importance of within species evolution in response to dietary changes and other gut 

620 perturbations.

621 Through integration of mutational data, metabolomics and microbiota composition, we 

622 show that that recently emerged mutations (<3 months) are a stronger signature of the past 

623 host diet than the microbiota composition and are at least on par with the metabolite 

624 composition in the feces. Different dietary regimens easily differentiated the genetic 

625 signatures of evolutionary adaptation. Our results suggest that microbial evolution is an 

626 overlooked biomarker and cause for the microbiota-mediated functional effects of diet which 

627 go beyond the microbiota composition. Therefore, the power of intra-specific genetic diversity 

628 as a biomarker for host diet should be investigated for other environmental factors affecting 

629 the gut ecology. Taken together, our findings emphasize the need to consider the evolution 

630 of the microbiota as an important mechanism involved in shaping microbiota functions. Such 

631 information needs to be taken into account to understand the microbiota-dependent host 

632 responses to diet and most likely to other environmental perturbations.
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660 FIGURE TITLES AND LEGENDS 

661 Figure 1. Rapid evolutionary adaptation of Bacteroides thetaiotaomicron (B. theta) to 

662 the mouse gut under different dietary regimens. (A) Schematic representation of 

663 experimental design. Green triangles indicate start and end of the dietary regimes. White 

664 triangles indicate sample collection for measuring marker frequency, whereas sample 

665 collection for Whole-Genome population sequencing (WGS), metabolomics and microbiota 

666 profiling are indicated by orange triangles, and by the triangles with black and yellow stroke, 

667 respectively. (B-C) Dynamics of neutral fluorescent marker are shown for mice on Standard 

668 Diet (SD) regimen (n=14), or on Western-style Diet (WD) regimen (n=13), respectively. (D-F) 

669 Competitions during mouse gut colonization. Competitions of ancestral bacteria (ANC) 

670 against clones evolved on SD (SDevol, n=10) (D), on WD (WDevol, n=12) (E), or between 

671 clones evolved in each diet (n=12) (F). For all competitions, competitive indices of evolved 

672 populations are shown, and blue background indicates competitions performed in mice fed 

673 SD, while red background indicates competitions in mice fed WD. One-sample t-test was 

674 used to determine whether each dataset is significantly different than 1, i.e., has advantage 

675 over the ANC (D and E). Mann-Whitney U-test was used to compare the competitions 

676 between the evolved clones (F). Each data point indicates an individual biological replicate 

677 (individual mouse), and horizontal lines indicate the median of each group. not significant p > 

678 0.05, ∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗∗p ≤ 0.0001. Time course for all the competitions, frequencies of 

679 the fluorescent marker and CFU/g of feces, are presented in Fig. S2 E-L and in Table S1, 

680 respectively. (G) Dynamics of neutral fluorescent marker are shown for mice on Alternation 

681 Diet (AD) regimen (n=14). For (B-C) and (G) each line shows frequencies of mCherry (

682 ) in each mouse through the period of 12 weeks (84 days). Lines highlighted in color 
𝐶𝐹𝑈𝑚𝐶ℎ𝑒𝑟𝑟𝑦

𝐶𝐹𝑈𝑡𝑜𝑡𝑎𝑙

683 represent examples of the different dynamic profiles in marker frequency observed in each 

684 dietary environment. Separate lines for each mouse, corresponding to 4 independent 

685 experiments (four mice cohorts, 8-12 mice each) are shown in Supplement Fig. S1A-D. (H) 

686 Changes in maker frequency, calculated as Marker frequency = Frequency (Day x) – 
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687 Frequency (Day (x-1)), plotted through time (12 weeks). Bold lines present the average of 

688 each group, while shadowed surrounding area represents +/- standard deviation. 

689 Accumulative marker frequency (t) for each group are presented in the insert (***p < 0.05; 

690 **p < 0.01; one-way ANOVA with Tukey's multiple comparisons test). 

691 Figure 2. Genetic basis of B. theta evolutionary adaptation to the mouse gut under 

692 different dietary regimens. (A) Frequencies of mutations (Y axis, dots) and total number of 

693 mutations (Z axis, bars) for all the mice (SD group n=14; WD group n=13; and AD group 

694 n=14). (B) Number of parallel mutations per mouse, each data point indicates an individual 

695 biological replicate (individual mouse), and horizontal lines indicate the median for each 

696 group. (C) Graphical representation of the location of de novo mutations. The three circles 

697 represent the B. theta chromosome, while different colors indicate the dietary regimens of the 

698 mice (SD blue; WD red; AD grey). Parallel mutations with frequency 5% are shown in each 

699 circle plot. The size of the bars indicates the number of mice in which that particular target 

700 appears mutated. See also Table S2, for the complete list of mutations (high and low 

701 confidence). 

702 Figure 3. Diet-specific mutational targets of evolutionary adaptation in B. theta. (A) 

703 Maximum frequencies of parallel mutations identified per mouse. (B) Shannon index to 

704 measure intra-species richness for parallel mutations. ANOVA, followed by a Tuckey test for 

705 pairwise comparison, was used to compare the frequencies of parallel mutations and intra-

706 species richness. ∗p ≤ 0.05, ∗∗p ≤ 0.01. (SD n=14; WD n=13; AD n=14). (C) Mutational targets 

707 (genes or intergenic regions) differentially prevalent across dietary regimens (p<0.05). Genes 

708 that passed a false discovery rate (FDR) of q<0.1 are marked in bold. Vertical diet labels (on 

709 the left) refer to each dietary regimen(s) for which a given mutational target is enriched, 

710 according to pairwise post-hoc test between regimens. For each mutational target predicted 

711 functions and substrates are listed. Green and red rectangles around the gene names 

712 highlight genes known to be induced in the presence of mucin O-glycans, plant 

713 polysaccharides or both (Lynch and Sonnenburg, 2012; Martens et al., 2008, 2011). Each 
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714 column on the heatmap indicates a mouse, whereas each row indicates a mutational target. 

715 Heatmap colors indicate the frequency at which a given mutational target shows mutations in 

716 each mouse. Parallel mutations, which did not show diet-specific selection (GLM p > 0.05) 

717 are listed in Table S2.

718 Figure 4. Effects of dietary regimen on microbiota composition, metabolites, and 

719 interplay correlation network between the three datasets. (A) Relative abundance (16S 

720 rRNA sequences – ASVs variants) of different phyla from fecal samples collected on the last 

721 day of evolutionary experiment for all mice (SD n=14; WD n=13; AD n=14). The relative 

722 abundances of each phylum present at >3% are shown (see also Table S4). (B) Fecal 

723 metabolite concentrations (NMR) on the last day of evolutionary experiment for all the mice. 

724 The plots show the absolute concentrations of SCFAs and sugars (μmol/g of feces). For 

725 remaining metabolites (organic acids, other metabolites and amino acids) see Fig. S4A-C 

726 and Table S3. Post hoc Mann-Whitney U-test with Holm’s correction for multiple 

727 comparisons was used; *p ≤0.05, ***p ≤ 0.005. In all the graphs each data point indicates an 

728 individual biological replicate (individual mouse), and horizontal lines indicate the median for 

729 each group. Principal component analyses (PCA) for each dataset are presented in Fig. 

730 S5A-C. To correlate different datasets: (C) mutations versus metabolites, (D) mutations 

731 versus microbiota composition (16S variants - ASVs), and (E) metabolites versus microbiota 

732 composition (16S variants - ASVs), we used Procrustes analysis. Plots represent two PCAs, 

733 for the two different datasets (mutations - green, metabolites - yellow, and 16S variants - 

734 pink), with individual samples being connected by a line. (F) Procrustes m2 statistic (lower 

735 values indicate stronger correlation). See also Mantel test (Fig. S4D). (G) Multi-omics 

736 correlation analysis between (i) mutation frequency in parallel mutations; (ii) metabolite 

737 concentrations; and (iii) microbiota composition (ASVs abundance) was carried with HAllA 

738 (Hierarchical All-against-All discovery). Areas of the network, whose nodes have >3 edges, 

739 are shaded. To generate the correlation network we kept only correlations with FDR≤0.1 and 
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740 absolute Spearman correlation rho>0.5. Heatmap, representing all correlations for which 

741 FDR p ≤ 0.1, is shown in Fig. S5D. 

742 Figure 5. Mutation can strongly predict dietary regime. (A-C) The DIABLO method 

743 identifies a set of latent variables, which explain more variance across the datasets. Plots 

744 from Variate 1 vs Variate 2 are presented for (A) mutations dataset (mutation frequency), (B) 

745 metabolites dataset (concentration), and (C) microbiota composition (16S variant - ASVs 

746 abundances). A total of 3 latent variables were included in the DIABLO model (See also Fig. 

747 S5E). (D) Cross-validation error rate of the DIABLO model. This method allows us to assess 

748 the performance of the DIABLO model in correctly classifying the diet to which each sample 

749 belongs (lower error indicates better performance). 

750 Figure 6. Changes in dietary regimens influence intra-species evolution and 

751 metabolite profile more strongly than microbiota composition in the mouse gut. (A-D) 

752 Dynamics of mutations, metabolites, and microbiota are shown for two populations: AD1 (left 

753 panels) and AD4 (right panels). Pink background on the plots indicates the weeks when mice 

754 were on WD diet.  (A) Each line corresponds to one mutation, and all mutations are shown. 

755 Two selected mutational targets, BT0867 and BT2689, are highlighted in red and blue, 

756 respectively. See also Table S5 for the full list of mutations. (B-C) Temporal dynamics for 

757 fecal metabolites, sugars and organic acids, respectively.  For other metabolites see also 

758 Fig. S6B-C, and Table S3.  (D) Relative abundance of microbiota composition – phyla levels 

759 are shown (see also Table S4 for individual ASVs). (E) The box plots show the Aitchinson 

760 distance between consecutive time points (for AD1 and AD4, top and bottom panel, 

761 respectively). mutations vs. microbiota composition ***p <.0001; metabolites vs. microbiota 

762 composition ***p = 0.0001; mutations vs. metabolites non-statistically significant, p = 0.8674; 

763 one-way ANOVA with Tukey's multiple comparisons test). (F) Principal component analysis 

764 (PCA) of temporal dynamics for mice AD1 (top panels) and AD4 (bottom panels). PCA were 

765 done on Aitchinson distances for each dataset: mutations (left panel), metabolites (central 

766 panel) and microbiota composition (16S variants - ASVs, right panel). Lines connect points of 
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767 the same mouse in temporal sequential order. Numbers inside the dots correspond to the 

768 week, to which a sample belongs, with week 4 being the first time point of the analysis and 

769 12 being the last. An arrow below the dots indicates the first time of point of the analysis 

770 (week 4), and an arrow above the dot indicates the last time point (week 12). Each PCA was 

771 calculated per mouse separately and represent PC1 versus PC2 data. For the dynamics of 

772 PCA1 and PCA2 through time, and consecutive Aitchinson distance see also Fig. S7A-C.

773 Figure 7 – Mutations selected under Western-style diet have advantage in 

774 consumption of mucin O-glycans. (A) Number of populations with mutations in BT0867 

775 and BT2689 in SD, WD and AD groups (bars, Y-axis), and their frequencies (dots, Z-axis) at 

776 the last timepoint of evolutionary experiment. In case of multiple mutations in a target gene, 

777 the sum of all was considered as total frequency (See also Table S2). (B) Number of 

778 populations with different mutations, which generate the amino acid substitution, in BT0867 

779 (at the last time point) for SD, WD and AD groups (bars, Y-axis) and their frequencies (dots, 

780 Z-axis) (See also Table S2). (C) Competitions of evolved clones selected from AD1 and AD4 

781 at week 4 (SD week = ADSD) and week 5 (WD week = ADWD) against the ancestral wild type 

782 (ANC) under laboratory conditions. Selection coefficients per generation of evolved clones 

783 are shown. One-sample t-test was used to determine whether each dataset is significantly 

784 higher than 0, i.e., has advantage over the ANC. ∗p ≤ 0.05. (D) Ratio of growth rates of 

785 clones from WD week versus SD week (ADWD / ADSD). Unpaired t-test was used to compare 

786 the competitions between the evolved clones. ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001. For all experiments the 

787 bars represent the median, and error bars +/-SEM. Experiments were repeated 4 

788 independent times, n=96. 

789 STAR methods

790 LEAD CONTACT AND MATERIALS AVAILABILITY

791 Further information and requests for resources and reagents may be directed to, and will be 

792 fulfilled by, the Lead Contact, Karina Bivar Xavier (kxavier@igc.gulbenkian.pt). 
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793

794 EXPERIMENTAL MODEL AND SUBJECT DETAILS

795 Animals 

796 Animals used in this study were bred at the Instituto Gulbenkian de Ciência (IGC) rodent 

797 facility, and maintained in biosafety level-2 animal barrier facility under strict specific 

798 pathogen-free (SPF) conditions. Experiments with animals were approved by the Institutional 

799 Ethics Committee and the Portuguese National Entity (Direção Geral de Alimentação e 

800 Veterinária; Ref. number 008958), which complies with European Directive 86/609/EEC of 

801 the European Council.

802 Animals were arbitrarily assigned to experimental groups. None of the animal 

803 experiments were performed blinded. Sample size was chosen according to institutional 

804 directives and in accordance with the guiding principles underpinning humane use of animals 

805 in research. No statistical analyses were performed to predetermine the sample sizes. All of 

806 the experiments were performed independently at least three times.

807 Mice on Standard Diet regimen consumed autoclaved pellets Rat and Mouse No.3 

808 Breeding (Special Diets Services), while mice on Western-Style regimen consumed γ-

809 irradiated High cholesterol diet for mice, Western – butter fat – diet (ssniff, TD.88137).

810

811 Bacterial strains and culture conditions

812 All strains used were derived from Bacteroides thetaiotaomicron VPI-5482, strain DSMZ 

813 2079 from German Collection of Microorganisms and Cell Cultures. 

814 B. theta was routinely cultured in a supplemented brain heart infusion (BHIS) growth 

815 medium (Bacic and Smith, 2008) (per litre: combine 37g Brain Heart Infusion Broth powder 

816 (Sigma-Aldrich); 1g L-cysteine (free base, Sigma); 10ml hemin solution (dissolve 100mg of 

817 hemin powder in 2ml 1M NaOH and 198ml dH2O; Sigma); if required 15g agar (Invitrogen); 

818 and upon autoclaving add 20ml 10% NaHCO3 (Sigma) and 200µl vitamin K (Sigma)). 

819 Competitions in laboratory conditions were done in modified meat extract media – media with 
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820 lower amount of meat extract, to allow assessment of carbon source (modified from (Rakoff-

821 Nahoum et al., 2014). Per litre: combine 4.375g Meat Extract (Sigma); 10g Peptone (BD 

822 Bacto); 5g NaCl (Merck); 2.5g Na2HPO4 (Merck); 1g L-cysteine (free base, Sigma); 10ml 

823 hemin solution (as described above; Sigma); and upon autoclaving add 20ml 10% NaHCO3 

824 (Sigma) and 200µl vitamin K (Sigma)). 

825 All B. theta growths were done in anaerobic box (atmosphere after 24h: O2<1%, CO2 

826 7-15%, Oxoid AnaeroGen) at 37°C. When required, appropriate antibiotics were added to the 

827 medium (30mg/mL gentamicin, and 25 mg/mL erythromycin). For competitions in laboratory 

828 conditions anaerobic boxes were incubated with shaking. Liquid culture of B. theta was 

829 normally grown in 20h, while on agar plates in 48h. 

830 Plasmids pWW3452 and pWW3515, carrying sfGFP and mCherry (Whitaker et al., 

831 2017), respectively, were conjugated into B. theta with a modified protocol from previously 

832 described protocol (Mimee et al., 2015). Briefly, an overnight culture of a donor Escherichia 

833 coli S17 λpir strain (grown in Lysogeny Broth (LB) with 100mg/mL ampicillin (Amp), with 

834 aeration), carrying the plasmid, was diluted 1000x in LB Amp, and grew to exponential phase 

835 (OD600~0.4). Overnight culture of a recipient strain B. theta was diluted 250x in BHIS, and 

836 grew to OD600~0.3. For mating, 900µl of E.coli culture was spin down, and resuspended with 

837 100µl of B. theta culture (to a final ratio of 1:10 recipient:donor). A mating mixture of E.coli- B. 

838 theta was spotted onto BHIS agar (~20µl per spot), and incubated upright in a 37°C 

839 incubator aerobically, for 5h. Afterwards the cells were collected by scraping and 

840 resuspended in 1ml PBS. Serial dilutions were plated on BHIS Gen Ery, and incubated 

841 anaerobically for 48h at 37°C. Obtained colonies were re-isolated on BHIS Gen Ery before 

842 further use.

843

844 METHOD DETAILS

845 Antibiotic treatment protocol

846 Since wild-type strains of Bacteroides spp. are unable to stably colonize SPF mice (Cullen et 

847 al., 2015; Lee et al., 2013), we used a modified antibiotic treatment protocol (Mimee et al., 
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848 2015) to allow colonization with B. theta VPI-5482 strain. Littermate female C57BL/6J 

849 littermates mice (with at least 20g of weight, ~10- to 12-week old animals) were separated 

850 and moved into individually ventilated cages with high-efficiency particulate air filters, with 

851 access to sterilized food and water ad libitum. Mice were administered with 0.625g/l of 

852 ciprofloxacin HCl and 1g/l of metronidazole in drinking water for 7 days ad libitum. To prevent 

853 usage of sugar-sweetener in the drinking water, but to ensure mice would not reject the 

854 antibiotic water (unsweetened water with pH lower than 6.5 is rejected by the animals), we 

855 ensure antibiotic-supplemented water would not have pH lower than 6.5. We diluted 0.625g 

856 of ciprofloxacin HCl in 20ml 0.1N HCl, and added it to 980ml of drinking water, which already 

857 contained 1g of metronidazole. We replaced antibiotic-supplemented water daily, due to the 

858 low percent of acid in the water ciprofloxacin HCl would precipitate faster. After 7 days we 

859 administered 100mg/kg of metronidazole by oral gavage for 3 days (every 24h), while 

860 keeping ciprofloxacin HCl (0.625g/l) dissolved in drinking water. After the third gavage with 

861 metronidazole mice were provided with non-supplemented drinking water for 48h. Animals 

862 were transferred to a clean cage on the third and eighth day of the antibiotic treatment. 

863  

864 Mouse colonization, sample collection and fluorescent marker dynamics

865 Overnight cultures of two isogenic strains of B. theta VPI-5482, labelled with sfGFP or 

866 mCherry fluorescent proteins, were washed in PBS, OD600 normalized (measured by 

867 NanoDrop 2000), and mixed at 1:1 ratio. 100µL of a suspension of ~108 colony forming units 

868 (CFUs) was used to gavage SPF-antibiotic treated mice (48h post antibiotic treatment). At 

869 48h post gavage with bacteria, a period which allowed B. theta to colonize the mouse gut, 

870 the dietary regimen occurred was changed for the first time. 

871 To follow marker frequency, fecal pellets were collected for 12 weeks on the first (day 

872 0) and last day of the experiment (day84), and on each week on the 1st, 4th, and 6th day 

873 after changes in dietary regimen (corresponds to 1 day prior to following changes). 

874 Fecal pellets for studying microbiota composition (3 pellets per time point) were 

875 collected on the first (day 0), prior to antibiotic treatment, and last day of the experiment (day 
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876 84), and on the 6th day post dietary regime change. Samples for studying metabolomics (3 

877 pellets per time point) were collected on the 6th day after change in dietary regime, from 

878 week 4 onwards. 

879 Samples for inflammation state of the animals (1 pellet per time point) were collected 

880 on the last day of evolutionary experiment (day 84, week 12). Fresh fecal pellets for following 

881 marker frequency were collected directly from mice, while feces microbiota composition and 

882 metabolomics (6 pellets in total) were harvested from each mouse by placing them in a 

883 sterile plastic cage until it defecated. The mass of all collected pellets was recorded for 

884 further analysis.

885 To follow marker frequency, fresh fecal pellets were diluted in PBS, and serial 

886 dilutions were plated on BHIS Gen Ery. Plates were incubated anaerobically for 48h at 37°C. 

887 Prior to determining the fluorescence color of the colonies, plates were exposed to 

888 atmospheric oxygen for at least 1h at 4°C, to allow fluorescent proteins to fold efficiently. 

889 Afterwards, the frequencies of sfGFP- and mCherry-labelled bacteria were assessed by 

890 counting fluorescent colonies with LED Transilluminator (Nippon Genetics Europe, GmbH). A 

891 sample of each collected fecal pellet was also cryopreserved in 25% glycerol at -80°C for 

892 further analysis. 

893 Evolutionary experiment was repeated in 4 independent experiments, for a total of 41 

894 mice (SD group 14 mice, WD group 13 mice, AD group 14 mice). 

895

896 Competitions in animals

897 For competitions in animals, 30 colonies were isolated from 4 bacterial populations from the 

898 last day of evolutionary experiment (day 84, week 12). A dilution of a fecal pellet glycerol 

899 stock from SD6, SD14, WD6 and WD11 was plated on BHIS Gen Ery. 30 sfGFP colonies for 

900 SD6 and WD6, and 30 mCherry colonies for SD14 and WD11 were isolated, inoculated in 

901 liquid BHIS Gen Ery and anaerobically grown overnight at 37°C. Overnight cultures were 

902 washed in PBS and normalized by measuring OD600 with NanoDrop 2000. An equal mixture 

903 of clones (1:30) for 4 populations was then stored in 25% glycerol at -80°C. Wild type B. 
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904 theta, carrying sfGFP or mCherry, were grown from one colony for each color, prepared and 

905 stored in the same way as mixture of colonies. 

906 After the antibiotic treatment (as described above), the mice were gavaged with the 

907 glycerol stock mixtures of (i) population with WT; or (ii) population with population, to a ratio 

908 of 1:1. 100µL of a suspension of ~108 CFUs was used to gavage the mice. Upon gavage, the 

909 feed was changed for the group of mice for WD dietary regime.     

910 Fresh fecal pellets were collected daily, for 5 days, and fluorescence marker 

911 frequency was determined as described above. Competitions were repeated from 2 to 4 

912 independent times.

913

914 Measurement of gut inflammation 

915 We measured gut inflammation via the concentration of lipocalin-2 as previously described 

916 (Barreto et al., 2020). Briefly, frozen feces were thawed and homogenized in the appropriate 

917 volume of 1X PBS to reach a final concentration of 100mg/mL. After extensive vortexing (5 

918 min) the samples were centrifuged for 30min at 18000g and 4°C. From the recovered 

919 supernatant we assayed the concentration of lipocalin-2 by using a Mouse lipocalin-2/NGAL 

920 DuoSet ELISA (R&D Systems), as indicated by the manufacturer.

921

922 Sequencing and analysis

923 Ancestral genomes sequencing 

924 One colony of the ancestral clone B. theta VPI-5482 (without fluorescent protein tag), one 

925 colony of B. theta tagged with sfGFP, and one colony of B. theta tagged with mCherry, were 

926 grown in BHIS at 37°C, anaerobic conditions, for 20h. Bacterial genomic DNA was isolated 

927 by following the classic phenol-chloroform extraction method as previously described 

928 (Wilson, 2001). Library was constructed at the IGC Genomics facility, using a low-volume 

929 Nextera protocol that uses the Tn5 transposase for tagmentation-based library construction 

930 (Baym et al., 2015). Genomes were paired-end sequenced using Illumina MiSeq 

931 Sequencers, which produced datasets of 250bp read pairs. 
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932 Hybrid de novo genome assembly

933 DNA of untagged B. theta was additionally sequenced by Oxford Nanopore MinION system, 

934 a long-read DNA sequencing technology. The genome was then assembled using a 

935 combination of Oxford Nanopore MinION and Illumina Miseq reads. Nanopore reads were 

936 first trimmed with PoreChop (v0.2.4) (Wick et al., 2017) and then assembled with the Flye 

937 (Version 2.6, with the plasmid option) (Kolmogorov et al., 2019). This was followed by four 

938 rounds of polishing with Racon (v1.4.1) (Vaser et al., 2017) and one with Medaka (v0.11.5) 

939 (Oxford Nanopore Technologies Ltd., 2018) using the Nanopore reads. Finally, the Illumina 

940 MiSeq data was used for two rounds of polishing with Racon (v1.4.1) followed by pilon 

941 (v1.23). To evaluate the quality of the assembly, we used CheckM, which showed 99.26% 

942 completeness, 0.01% contamination and 0% strain heterogeneity, exactly the same values 

943 as for two closely related assemblies: B. theta VPI-5482 (GCA_000011065.1 (Washington 

944 University Department of Molecular Biology and Pharmacology, 2003)) and B. theta DSM 

945 2079 (GCA_014131755.1 (UFZ, 2020)). The latter is PacBio+Illumina assembly for the 

946 parent strain of the strain used here. 

947 The final genome assembly included 4 circular contigs, with sizes 6272442bp, 

948 59187bp, 21263bp and 20321bp, with the first two corresponding to the chromosome and 

949 the plasmid known to be present in this B. theta strain. We then remapped the trimmed 

950 Illumina MiSeq reads against the assembly (using breseq in clonal mode (Barrick et al., 

951 2009)) and observed that coverage for the two smaller contigs was highly non-

952 homogeneous, with coverage failing to fit a negative binomial distribution for the smallest 

953 contig. Thus, we discarded these contigs from further analysis. The plasmid contig also 

954 showed non-homogeneous coverage, with most of its length being covered in repetitive 

955 regions. This, together with the fact that the two NCBI assemblies mentioned above had 

956 plasmid sizes of 33036-33038bp, led us to suspect that the plasmid assembly was incorrectly 

957 duplicated (moreover, with different assembly parameters we could recover the plasmid with 

958 33Kbp smaller size, albeit at a cost of having a non-contiguous chromosome). We indeed 

959 could align the ~30Kbp of B. theta VPI-5482 plasmid at two locations in our plasmid contig, 
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960 further reinforcing the idea that the plasmid is misassembled. Thus, we next combined the de 

961 novo assembly of the chromosome with the sequence of the B. theta VPI-5482 plasmid and 

962 remapped the trimmed Illumina MiSeq reads against it (breseq in clonal mode). In this case, 

963 coverage was homogeneous along the length of both the plasmid and the chromosome. 

964 While breseq did not identify any differences between the reads and the plasmid sequence, it 

965 still identified 6 indels relative to the chromosome, which we corrected using the gdtools 

966 APPLY function from breseq. Our final chromosome assembly has 6272440bp, similar to the  

967 6260361bp and 6271157bp for the chromosomes of B. theta VPI-5482 and DSM 2079 

968 strains, with which it had a high Average Nucleotide Identity (de novo assembly versus DSM 

969 2079: 99.992%; de novo assembly versus VPI-5482: 99.982%; calculated with fastANI 

970 v1.32) (Jain et al., 2018).

971 We used prokka (v1.14.6) (Seemann, 2014), with standard settings, to annotate the 

972 de novo assembled chromosome of B. theta and identified 4975 features, including 4889 

973 CDS (CoDing Sequence). To facilitate understanding the functional relevance of the mutated 

974 targets, we used BLAST between genes identified in our assembly and the genes annotated 

975 in the B. theta VPI-5482 assembly (GCA_000011065.1 (Washington University Department 

976 of Molecular Biology and Pharmacology, 2003)), whose gene names are commonly referred 

977 in the literature. We attributed the gene names from B. theta VPI-5482 if % identity was 

978 >97%, query cover ≥97%, and subject cover was ≥97% or ≤103% (genes that fell outside of 

979 these thresholds kept the gene name assigned by prokka, i.e. genes named TDAxxxx).

980 Population sequencing 

981 To obtain DNA from bacterial populations we used a mixture of clones (1000-5000 

982 colonies). Clones were collected from the plates (BHIS Ery+Gen) by scrapping and 

983 resuspending in PBS. To extract the DNA, we used MasterPure™ Gram Positive DNA 

984 Purification Kit (Epicentre, Illumina). Additionally, DNA of B. theta tagged with sfGFP and 

985 mCherry were also sequenced in population analysis mode (1000-5000 colonies obtained 

986 by plating serial dilutions of glycerol stock from frozen vials). For all bacterial populations, 

987 and the two populations of ancestral clones tagged with sfGFP or mCherry, the libraries were 
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988 prepared as described above and genomes were paired-end sequenced by NextSeq500 

989 (Illumina), which produced datasets of 150bp read pairs.

990 Genome re-sequencing and mutation inference for evolved populations

991 All sequenced populations were analyzed with breseq 0.34.1 (Barrick et al., 2009), using the 

992 following settings: (i) polymorphism frequency cut-off 0; (ii) polymorphism minimum variant 

993 coverage each strand 3, (iii) polymorphism bias cut-off 0.05; (iv) minimum mapping quality 

994 20; (v) base quality cutoff 30. These settings were chosen to allow breseq to identify all 

995 mutations (independent of their frequency), but a mutation is only identified if: (i) at least 3 

996 reads align to each strand; (ii) there is no significant bias (p<0.05) in the number of reads 

997 aligned to each strand; (iii) the minimum mapping quality is >20; and (iv) base quality is >30. 

998 The identified mutations were then filtered to remove low confidence mutations, defined as 

999 mutations that: (i) were detected in the ancestral clones and (ii) appeared in regions that had 

1000 ≥3 mutations in ≤1 Kb within a population and for which the same region was detected 

1001 across ≥2/3 of the mice. Both high and low confidence mutations are included in Table S2 

1002 and S5, but low confidence mutations were not considered for further analysis because these 

1003 can be sequencing artefacts or mutational hot spots. 

1004 Identification of parallel mutations at day 84 

1005 Parallel mutations were defined as any gene or intergenic region that was mutated in at least 

1006 2 mice (irrespective of diet) and for which the summed mutation frequency at that target was 

1007 ≥5% in at least one of them. When multiple mutations occur in the same gene or intergenic 

1008 region, we summed their frequency and use the sum as a final percent.

1009 Identification of diet-specific parallel mutations 

1010 We used a Poisson Generalized Linear Model (GLM; using the brglm2 package (Kosmidis, 

1011 2021)) to identify mutational targets that were differentially prevalent across dietary regimens 

1012 (p<0.05) and that had a false discovery rate q<0.1. For significant mutational targets, we then 

1013 applied a post-hoc Tukey test (emmeans package (Lenth, 2020)) to define whether a 

1014 mutational target was enriched or depleted for one or two dietary regimens. For example, the 

1015 post-hoc test indicated that mutations in BT4246 were significantly more prevalent (p<0.05) 
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1016 in the WD group when compared against either the AD or the SD groups. Thus, mutations in 

1017 this gene were identified as being enriched in the WD group. On the other hand, mutations in 

1018 gene BT3702 were significantly less prevalent in the SD group versus either the WD or the 

1019 AD group, but there was no significant difference between WD and AD. Thus, mutations in 

1020 this gene were identified as being enriched in the SD and AD groups. 

1021 Microbiota composition in fecal samples (16S rRNA sequencing)

1022 Fecal samples were collected during the evolutionary experiment and stored at −80°C utill 

1023 processed. DNA extraction was performed as previously described (Thompson et al., 2015). 

1024 Briefly, samples were disrupted by using 0.3g of 0.1-mm glass beads (Scientific Industries 

1025 SI-BG01) and bead-beaten using a QIAGEN Tissuelyser II (Retsch) for 2X 1min with 30 rev/s 

1026 pulses. Next, DNA extraction was done using the QIAamp DNA Stool Mini Kit (QIAGEN) 

1027 according to the manufacturer’s instructions. Final samples were diluted to a final volume of 

1028 100µl in ATE buffer and stored at -20°C. 16S rRNA gene was amplified in triplicate using the 

1029 515F/806R (V4 regions) primer pairs recommended by the Earth Microbiome Project under 

1030 the following PCR cycling conditions: 94°C for 3min; 35 cycles of 94°C for 60s, 50°C for 60s 

1031 and 72°C for 105s; and extension at 72°C for 10min (Caporaso et al., 2011, 2012). Library 

1032 preparation and sequencing (2 × 250bp sequencing by Illumina MiSeq Benchtop Sequencer) 

1033 was performed at the IGC Genomics Unit. 

1034 Qiime2 (v2018.8) (Bolyen et al., 2019) was used to analyze the raw sequencing data, 

1035 using the DADA2 (Callahan et al., 2016) plug-in for quality filtering/trimming, merging of 

1036 paired-end reads, filtering of chimeras, identification of amplicon sequence variants (ASV) 

1037 and quantification of their abundances. ASVs with less than 100 reads across the entire 

1038 dataset were filtered out. Taxonomic assignment was done against the SILVA (Quast et al., 

1039 2013) database (version 132) and ASV tables with taxonomic classification were then used 

1040 as input for the analysis described below.

1041

1042 Metabolomics of gut contents 
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1043 We performed 1H-NMR (proton nuclear magnetic resonance) analysis on fecal contents to 

1044 evaluate the composition of the metabolic environment in the mouse gut. Fecal samples 

1045 were diluted in 1ml of deuterated water (D2O, 99,9% Sigma-Aldrich). 0.3g of 0.1mm glass 

1046 beads (Scientific Industries SI-BG01) were added to each tube and samples were bead-

1047 beaten using a QIAGEN Tissuelyser II (Retsch), 2X 1min with 30rev/s pulses. To remove 

1048 large debris and the glass beads, the samples were pelleted by centrifugation at 22000g for 

1049 30min at 4°C. Supernatant was collected and filtered through a 0.22mm filter (Milipore). Next, 

1050 samples were filtered with 3KDa filters (Vivaspin 500) by centrifugation at 15000g and 4°C, 

1051 for 3h (or until 150mL of filtrate was obtained). Filtered samples were stored at -80°C until 

1052 spectrum acquisition. 

1053 For spectrum acquisition, samples were thawed at room temperature and mixed with 

1054 60μl of 350mM phosphate buffer (pH 7.09 with 2% NaN3, 10μl of a 0.05% (w/v) 3-

1055 (Trimethylsilyl)propionic-2,2,3,3-d4 (TSP-d4, Sigma-Aldrich) solution, and 380μl of D2O) to a 

1056 total volume of 600μl. The mixture was transferred to a 5mm glass NMR tube. All solutions 

1057 were prepared with D2O. Samples were homogenized by inversion and the spectra were 

1058 acquired after pH measurement. Acquisitions were performed on a Bruker AVANCE II+ 

1059 500MHz instrument equipped with Cryo TCI (F) (Prodigy) 5mm probehead with z-gradients. 

1060 1H-NMR spectra were acquired using 1D NOESY pulse sequence with pre-saturation 

1061 (noesypr1d) under the following conditions: 90° pulse for excitation mixing time 100ms, 

1062 acquisition time 4s, and relaxation delay 1s. All spectra were acquired with 200 scans at 

1063 25°C, with 48k data points and 6002 Hz (12 ppm) spectral width (Chenomx acquisition 

1064 parameters). The recorded 1H-NMR spectra were phase corrected using Bruker TopSpin 3.2 

1065 and spectra were then analyzed using Chenomx NMR Suite 8.1. Compounds were identified 

1066 by manually fitting reference peaks to spectra in database Chenomx 500MHz Version 10. 

1067 Quantification was based on internal standard peak integration (TSP-d4). 

1068

1069 Integrative analysis of microbiota, metabolome and mutational profiles

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



40

1070 In order to perform the analysis addressed in this section, each of the datasets were first 

1071 filtered to reduce sparsity. Thus, for the mutational profile, we kept only parallel mutations (as 

1072 defined above), for the microbiota we kept only the ASVs that were detected in at least 2 

1073 mice with a frequency ≥0.05 in at least one mouse (i.e. the same criteria used for parallel 

1074 mutations), for metabolome we kept all metabolites as sparsity was low. This meant that we 

1075 kept 73 mutational targets, 24 ASVs, and all 45 metabolites. We applied the centered log 

1076 ratio (CLR) transformation to each of the datasets (through the microbiome R package (Ernst 

1077 et al., 2020)), which is a commonly used transformation for integration of omics datasets, as 

1078 it can account for compositionality (Fernandes et al., 2014; Quinn et al., 2019). 

1079 Using this data, we estimated the Aitchinson distance between samples (within each 

1080 dataset) and carried both Procrustes and Mantel tests with the three pairwise combinations 

1081 of datasets in order to understand how well one dataset can predict the other. Both tests 

1082 were performed with the vegan R package (Oksanen et al., 2020), with p values determined 

1083 from 999 permutations. 

1084 Additionally, to identify correlations between pairs of specific features from different 

1085 datasets, we used the tool hierarchical all-against-all association (HallA v0.8.17 (Rahnavard 

1086 et al., 2017)), which is a method to identify associations, specifically designed for high-

1087 dimensional data. The network shown in Fig. 4 was then obtained by filtering the pairwise 

1088 correlations to keep only those with FDR q<0.1 and |rho|>0.5 and was generated with the R 

1089 packages ggraph (Pedersen, 2020a), igraph (Csardi and Nepusz, 2006) and tidygraph 

1090 (Pedersen, 2020b).

1091 In order to understand which datasets could better distinguish between the different 

1092 diets we used the R package mixOmics (Rohart et al., 2017), which implements the DIABLO 

1093 method (Data integration analysis for biomarker discovery using latent components), that is 

1094 based on sparse generalized canonical correlation analysis (Singh et al., 2019)). In order to 

1095 run DIABLO, we first tested which was the best number of latent variables (using functions 

1096 block.splsda and perf, with a max of 5 latent variables). We kept 3 latent variables per 

1097 dataset and tested which was the number of features per dataset and component that would 
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1098 be most appropriate, using function tune.block.splsda. This identified 6, 25 and 45 features 

1099 for components 1, 2 and 3 for the mutation dataset; 20, 14 and 12 features for the microbiota 

1100 and 7, 5 and 7 features for the metabolome. We fitted the final model with the block.splsda 

1101 function and evaluated its performance with the perf function, using 5-fold cross validation, 

1102 repeated 50 times. This allowed us to estimate the cross-validation error rate for classifying 

1103 samples to each diet. 

1104

1105 Purification of Mucin O-Glycans 

1106 Mucin O-glycans were purified from porcine gastric mucus as previously described (Marcobal 

1107 et al., 2011) with modifications. Briefly, porcine gastric mucin (Type III, SigmaAldrich) was 

1108 suspended at 2.5% w/v in 100 mM Tris (pH 7.4). The solution was autoclaved for 10 min at 

1109 121°C. The solubilized mucin was cooled to 60°C. Proteinase K (GRiSP, Lda.) was added to 

1110 a final concentration of 0.1mg/ml and proteolysis of mucin was allowed to happen by 

1111 incubation at 55°C, for 20h. The suspension was mixed well for 1min, and ultracentrifuged for 

1112 30min, 21000g (room temperature) to remove insoluble material. The supernatant was 

1113 collected and NaOH and NaBH4 were carefully added (to prevent formation of bubbles) to 

1114 final concentrations of 0.1M and 1M, respectively. To release O-glycans from the mucin 

1115 glycoproteins the solution was incubated at 55°C for additional 20h with slow shaking. The 

1116 pH was subsequently neutralized to 7.4 and solution was dialyzed exhaustively against water 

1117 (1kDa MW cut-off). To remove remaining insoluble materials an additional step of 

1118 ultracentrifugation in Ultracentrifuge RC50 with SL1500 rotor at 20412g, 21°C, 30min was 

1119 performed. Supernatant was collected and neutralized with HCl. The mass yieldwas 

1120 determined by complete evaporation (with SpeedVac Vacuum Concentrators) of one aliquot 

1121 of purified mucin O-glycan (final concentration 0.3-0.5% w/v).

1122

1123 Experiments in laboratory conditions

1124 All experiments in laboratory conditions were done in modified meat extract media 

1125 supplemented with 0.25% purified mucin O-glycans, 0.1% glucose, or with no saccharides 
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1126 added. Isolated evolved clones were first isolated from their respective frozen vials (coming 

1127 from evolutionary experiment), and then individual colonies (3 per isolate) were inoculated 

1128 separately in BHIS medium without antibiotics and incubated anaerobically overnight 

1129 (approximately 20h). The following day the cultures were washed in 1XPBS and number of 

1130 cells in each culture was determinaed by NanoDrop. OD600 was normalized to 0.1 for all the 

1131 cultures. For all clones three independent replicates were used and all the experiments were 

1132 repeated at least twice.

1133 Competitions between evolved clones and ancestral clone

1134 Evolved clones were mixed with the ancestral clone of the opposite color in a final 1:1 

1135 mixture, and 2µl of mixture was added to 148µl medium in a 96-well plate. Plates were 

1136 incubated anaerobically with shaking for 12h, at 37°C. The initial and final frequencies of the 

1137 strains were obtained by counting their cell numbers in the Flow Cytometer mentioned below. 

1138 The relative fitness (selection coefficient per generation) of evolved clones was measured by 

1139 competitive growth against an ancestral clone B. theta. Selection coefficient was calculated 

1140 as follow: 

1141 𝑠 =
(𝑙𝑛

𝑁𝑒𝑣𝑓
𝑁𝑎𝑛𝑐𝑓) ‒ (𝑙𝑛

𝑁𝑒𝑣𝑖
𝑁𝑎𝑛𝑐𝑖)

(𝑙𝑛
𝑁𝑎𝑛𝑐𝑓
𝑁𝑎𝑛𝑐𝑖 )

1142 with  and  being the initial and the final number of evolved bacteria, respectively, 𝑁𝑒𝑣𝑖 𝑁𝑒𝑣𝑓

1143 and  and  being the initial and the final number of ancestral bacteria. 𝑁𝑎𝑛𝑐𝑖 𝑁𝑎𝑛𝑐𝑓

1144 A BD LSR FortessaTM SORP flow cytometer was used to quantify bacteria, using a 

1145 96-well plate High-Throughput Sampler (HTS). To accurately determine cell concentration 

1146 we also measure volumes using SPHERO fluorescent spheres (AccuCount 2.0 µm blank 

1147 particles). Final number of bacterial cells was calculated based on the counts of fluorescently 

1148 labelled bacteria. The instrument was equipped with a 488nm laser used for scatter 

1149 parameters and sfGFP detection, with a forward scatter (FSC) detector in a photomultiplier 

1150 tube (PMT) to detect bacteria, and a 561nm laser for mCherry detection. sfGFP and mCherry 

1151 were measured using bandpass filters in the range of 540/30 nm and 630/75nm, respectively. 
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1152 The samples were acquired using FACSDiVa (version 9) software, and analyzed using 

1153 FlowJo (version 10). All Flow Cytometry experiments were done at the Flow Cytometry 

1154 Facility of the Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal.

1155 Growth rates of the evolved clones 

1156 An aliquot of 2µl of evolved clones (as above) was added to 148µl medium in a 96-well plate. 

1157 Growth was followed by measuring OD600 every 2h. To obtain a full growth curve, with 

1158 minimal disruption of growth (exposure to O2) all samples were inoculated in two parallel 96-

1159 well plates (incubated in two separate anaerobic boxes), and OD600 was measured 

1160 alternately every 2h, in a way that each plate was only exposed to O2 every 4h. OD600 was 

1161 measured using a microplate reader (VICTOR3™ - Perkin). Growth rate was calculated from 

1162 the maximum slope of linear regression of  increase over time. 𝑙𝑛 (𝑂𝐷600)

1163

1164 QUANTIFICATION AND STATISTICAL ANALYSIS 

1165 Statistical analyses were performed in Graphpad Prism 8.2.1 or R software: https://www.r-

1166 project.org/, using the procedures described in the previous sections. Statistical details for all 

1167 tests performed can be found in the figure legends. 

1168

1169 DATA AND CODE AVAILABILITY 

1170 Whole Genome Sequencing data have been deposited in the NCBI Sequence Read Archive 

1171 with accession PRJNA749657, while 16S rRNA sequences are available in the public data 

1172 repository Zenodo (doi:10.5281/zenodo.5137478). Code will be available at 

1173 https://github.com/ramiroricardo/BthetaDietEvolution.

1174

1175 SUPPLEMENTAL INFORMATION TITLES AND LEGENDS 

1176 Figure S1 – Shifts in marker frequency as a proxy for evolutionary adaptation of B. 

1177 theta to the mouse gut. (See also Fig. 1) Marker frequency of red-labelled B. theta carrying 
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1178 mCherry marker, in each mouse separately - Standard Diet (SD) (n = 14, left column); 

1179 Western-style Diet (WD) (n = 13, middle column); and Alternation Diet (AD) (n = 14, right 

1180 column). (A) First evolutionary experiment. (B) Second evolutionary experiment. (C) Third 

1181 evolutionary experiment. (D) Forth evolutionary experiment. Names of each mouse are 

1182 indicated on the corresponding graph. Each evolutionary experiment represents a 

1183 biologically independent experiment: (i) independent initial bacterial ancestral clones were 

1184 used for the gavage; (ii) and independent mice cohort.

1185 Figure S2 – Physiological state of the animals (weight, fat pads and inflammation), 

1186 microbiota composition, and competitions. (See also Fig. 1) (A) Average mouse weight 

1187 (grams) during the period of 12 weeks (84 days). Mean values for each group ± SD are 

1188 plotted. (*p<0.05; **p<0.01; ***p<0.005; two-way ANOVA). Blue stars indicate the difference 

1189 between SD and WD groups, while grey stars indicate difference between WD and AD 

1190 groups. (B) Inguinal fat pads (grams) from 5 arbitrarily selected animals from each group (∗p≤ 

1191 0.05, ∗∗p≤ 0.01; Mann-Whitney U-test). (C) Inflammation state of the host animal. Levels of 

1192 Lipocalin-2 measured in the fecal samples of all the animals (bars SD, WD, and AD) at the 

1193 last day of the evolutionary experiment, week 12 (Day 84). (D) Fecal bacterial microbiota 

1194 compositions measured by 16S rRNA amplicon sequence variants (amplicon sequence 

1195 variants – ASVs). Plots represent average of the relative abundance of each taxon (the lower 

1196 taxonomic levels) existent at >3%. All other taxon were combined in the category “Others”. 

1197 Samples were analyzed for all the mice (for SD group n=14, for WD group n=13, for AD 

1198 group n=14) across time (starting from before the antibiotic treatment – UT – untreated). (E-

1199 L) De novo mutations accumulated during evolutionary adaptation are diet specific. (E-H) 

1200 Frequency of a fluorescent marker of a population of 30 clones of the same color from the 

1201 day 84 (winning color in the evolutionary experiment, Fig.1 and Fig.S1) were competed 

1202 against the ancestral clone (ANC) of the opposite color. (E) Clones from population SD6 

1203 (sfGFP winning population) were competed against ANC tagged with mCherry (Ma1-5). (F) 

1204 Clones from population SD14 (mCherry winning population) were competed against ANC 
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1205 tagged with sfGFP (Mb1-5). (G) Clones from population WD6 (sfGFP winning population) 

1206 was competed against ANC tagged with mCherry (Mc1-6). (H) Clones from population WD11 

1207 (mCherry winning population) were competed against ANC tagged with sfGFP (Md1-6). (I-L) 

1208 Competition of SDevol against WDevol. (I and K) 30 clones from population SD6 (sfGFP 

1209 winning population) were competed against 30 clones from population WD11 (mCherry 

1210 winning population) (Ma1-6 and Mc1-6). (J and L) 30 clones from population SD14 (mCherry 

1211 winning population) were competed against 30 clones from population WD6 (sfGFP winning 

1212 population) (Mb1-6 and Md1-5). Background of each graph indicates the diet consumed by 

1213 the animals during the competition – white background stands for SD diet, pink background 

1214 from WD diet. Each line presents competition in individual mouse and the color of the line 

1215 indicates which frequency is presented: Blue line - Frequency of a fluorescent marker of 

1216 SDevol is presented; Red line - Frequency of a fluorescent marker of a WDevol is presented. 

1217 Each panel (from E to L, two graphs for each – white and pink background) present 

1218 individual experiment. 

1219 Figure S3 – Characterization of de novo mutations from the last day of the 

1220 evolutionary experiment. (See also Fig. 2) (A) Mutation spectra. Each bar presents 

1221 mutations in every mouse. Y-axis indicates the frequency of mutation type. Mutation types 

1222 are indicated with different colors (color panel on the right). Black dots indicate the frequency 

1223 of SNPs, and white dots indicate the frequency of mutations which occur in the coding 

1224 region. Indel – insertion/deletion; IS - Insertion sequence; SNP – single nucleotide 

1225 polymorphism. (B) Box plot is presenting the fraction of parallel mutations among all 

1226 mutations (median indicated).

1227 Figure S4 - Fecal metabolites and microbiota. (See also Fig. 4). (A-C) The concentrations 

1228 of metabolites (μmol/g) in the feces were measured using NMR. The segments represent the 

1229 absolute concentrations of (A) organic acids, (B) other metabolites, and (C) amino acids 

1230 (See also Table S3). For all analysis Post hoc Mann-Whitney U-test with Holm’s correction 

1231 for multiple comparisons was used; *p ≤0.05, ** p ≤0.01 ***p ≤ 0.005. All the samples from 
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1232 the last day of the evolutionary experiment, Day 84 – week 12 (SD=14 – blue dots, WD=13 – 

1233 red dots, and AD=14 – grey dots) were analyze. In all the graphs presented, each data point 

1234 indicates an individual biological replicate (individual mouse), and horizontal lines indicate 

1235 the median for each group. (D) Statistics obtained with the Mantel test are presented. From 

1236 Mantel test we obtain the r statistic, for which larger values indicate stronger correlation.

1237 Figure S5 – Multi-omics analysis of the three different datasets. (See also Fig. 4 and 

1238 Fig. 5). (A-C) Principal component analysis (PCA) on Aitchinson distances for each dataset. 

1239 (A) Mutation frequency per gene for parallel mutations (i.e., genes that were mutated in at 

1240 least two mice and for which the frequency >5% in at least one of the mice); (B) Metabolites 

1241 (raw data); and (C) Microbiota composition (filtered ASVs, which appeared in at least two 

1242 mice at >5% relative abundance). For all datasets the following statistical analysis were 

1243 performed: (i) Permanova and betadisper on the Aitchinson distances; and (ii) ANOVA on the 

1244 values of each principal component followed by a post-hoc Tukey test. (A) For mutations, 

1245 both Permanova and betadisper are significant and thus it is not possible to determine if the 

1246 difference between the diets is on the centroid or the dispersion of the points. ANOVA for 

1247 each PC shows significant differences (p<0.05) in PC1 (WD is significantly different from all 

1248 other diets) and PC2 (SD is significantly different from all other diets). (B) For metabolites, 

1249 Permanova test is significant, while betadisper is not, which indicates an effect of treatment 

1250 on the centroid of the Aitchinson distances. ANOVA for each PC shows significant 

1251 differences in PC1 (WD is significantly different from all other diets) and no significant effect 

1252 on PC2. (C) For microbiota, both Permanova and betadisper are significant. ANOVA for each 

1253 PC shows no significant differences in PC1 and a significant effect on PC2 (AD is 

1254 significantly different from all other diets). (D) Heatmap showing all correlation values 

1255 obtained from the analysis with HAllA, where FDR p-value<0.1 (See also Fig. 4G). Names of 

1256 genes with mutations, metabolites, and microbiota composition (ASVs), are shown. Colors 

1257 indicate Spearman rho. (E) Ordination plots for DIABLO latent Variate 1 vs Variate 3 (top 
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1258 panel), and Variate 2 vs Variate 3 (bottom panel), for the following datasets: mutations (left), 

1259 metabolites (center), and microbiota composition (ASV variants) (right) (see also Fig. 5A-C).

1260 Figure S6 - Analysis of temporal dynamics sequences. (See also Fig. 6). Global 

1261 summary of temporal dynamics for the three datasets: relative abundance of mutations, 

1262 metabolites and microbiota composition. The following graphs quantitatively summarize the 

1263 dynamics. The X-axis shows the number of fluctuations that each dataset undergoes. The Y-

1264 axis shows the maximum frequency change that each dataset undergoes. This indicates that 

1265 even when majority of mutations seem to fluctuate only once, the mutations that change the 

1266 most in frequency are those which fluctuate 4 times. For all plots: Mouse AD1 – yellow line; 

1267 Mouse AD4 – green line. (B-C) Temporal dynamics for fecal metabolic compositions for two 

1268 mice, Mouse AD1 (left panels) and Mouse AD4 (right panels). The concentrations of 

1269 metabolites (μmol/g of feces) were measured using NMR. The panels represent the absolute 

1270 concentrations of (B) amino acids, and (C) other metabolites. (See also Table S3). 

1271 Figure S7. Aitchinson distances. (See also Fig. 6). Temporal dynamics for (A) principal 

1272 component 1 (PC1), and (B) principal component 2 (PC2) across time for mutations (green 

1273 line), metabolites (yellow line), and microbiota composition (ASVs, pink line). PCAs for AD1 - 

1274 top panel; and PCAs for AD4 - bottom panel. Mutations, which appear in at least twice (in 

1275 two different time points), were used for these analyzes. (C) To see the consecutive 

1276 distances between samples, consecutive Aitchinson distances for Mouse AD1 (top panel) 

1277 and Mouse AD4 (bottom panel) were calculated. The plots show the Aitchinson distance 

1278 between consecutive time points. Pooled data are presented in Fig. 6E. 

1279

1280 REFERENCES

1281 Albenberg, L.G., and Wu, G.D. (2014). Diet and the Intestinal Microbiome: Associations, 

1282 Functions, and Implications for Health and Disease. Gastroenterology 146, 1564–1572.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



48

1283 Bacic, M.K., and Smith, C.J. (2008). Laboratory Maintenance and Cultivation of Bacteroides 

1284 Species. Curr Protoc Microbiol. Chapter 13.

1285 Bäckhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A., and Gordon, J.I. (2005). Host-

1286 Bacterial Mutualism in the Human Intestine. Science (80-. ). 307.

1287 Barreto, H.C., Sousa, A., and Gordo, I. (2020). The Landscape of Adaptive Evolution of a 

1288 Gut Commensal Bacteria in Aging Mice. Curr. Biol. 30, 1102-1109.e5.

1289 Barrick, J.E., Yu, D.S., Yoon, S.H., Jeong, H., Oh, T.K., Schneider, D., Lenski, R.E., and 

1290 Kim, J.F. (2009). Genome evolution and adaptation in a long-term experiment with 

1291 Escherichia coli. Nature 461, 1243–1247.

1292 Barroso-Batista, J., Sousa, A., Lourenço, M., Bergman, M.-L., Sobral, D., Demengeot, J., 

1293 Xavier, K.B., and Gordo, I. (2014). The First Steps of Adaptation of Escherichia coli to the 

1294 Gut Are Dominated by Soft Sweeps. PLoS Genet. 10, e1004182.

1295 Barroso-Batista, J., Demengeot, J., and Gordo, I. (2015). Adaptive immunity increases the 

1296 pace and predictability of evolutionary change in commensal gut bacteria. Nat. Commun. 6, 

1297 6:8945.

1298 Barroso-Batista, J., Pedro, M.F., Sales-Dias, J., Pinto, C.J.G., Thompson, J.A., Pereira, H., 

1299 Demengeot, J., Gordo, I., and Xavier, K.B. (2020). Specific Eco-evolutionary Contexts in the 

1300 Mouse Gut Reveal Escherichia coli Metabolic Versatility. Curr. Biol. 30, 1049-1062.e7.

1301 Baumler, A.J., and Sperandio, V. (2016). Interactions between the microbiota and pathogenic 

1302 bacteria in the gut. Nature 535, 85–93.

1303 Baym, M., Kryazhimskiy, S., Lieberman, T.D., Chung, H., Desai, M.M., and Kishony, R.K. 

1304 (2015). Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS One 

1305 10, e0128036.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



49

1306 Van den Bergh, B., Swings, T., Fauvart, M., and Michiels, J. (2018). Experimental Design, 

1307 Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol. Mol. Biol. 

1308 Rev. 82, e00008-18.

1309 Bjursell, M.K., Martens, E.C., and Gordon, J.I. (2006). Functional genomic and metabolic 

1310 studies of the adaptations of a prominent adult human gut symbiont, Bacteroides 

1311 thetaiotaomicron, to the suckling period. J. Biol. Chem. 281, 36269–36279.

1312 Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., 

1313 Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., et al. (2019). Reproducible, interactive, 

1314 scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–

1315 857.

1316 Callahan, B.J., Mcmurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P. 

1317 (2016). dada2: high-resolution sample inference from illumina amplicon data. Nat. Methods 

1318 13, 581–583.

1319 Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, 

1320 P.J., Fierer, N., and Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of 

1321 millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108, 4516–4522.

1322 Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, 

1323 S.M., Betley, J., Fraser, L., Bauer, M., et al. (2012). Ultra-high-throughput microbial 

1324 community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624.

1325 Carmody, R.N., Gerber, G.K., Luevano, J.M., Gatti, D.M., Somes, L., Svenson, K.L., 

1326 Turnbaugh, P.J., Hidalgo, G., Baldassano, R.N., Anokhin, A.P., et al. (2015). Diet Dominates 

1327 Host Genotype in Shaping the Murine Gut Microbiota. Cell Host Microbe 17, 72–84.

1328 Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., 

1329 Arumugam, M., Batto, J.-M., Kennedy, S., et al. (2013). Richness of human gut microbiome 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



50

1330 correlates with metabolic markers. Nature 500, 541–546.

1331 Chen, P., and Zhang, J. (2020). Antagonistic pleiotropy conceals molecular adaptations in 

1332 changing environments. Nat. Ecol. Evol. 4, 461–469.

1333 Consortium, H.M.J.R.S., Nelson, K.E., Weinstock, G.M., Highlander, S.K., Worley, K.C., Huot 

1334 Creasy, H., Jennifer, R.W., Douglas B, R., Mitreva, M., Sodergren, E., et al. (2010). A 

1335 Catalog of Reference Genomes from the Human Microbiome. Science 328, 994–999.

1336 Conway, T., and Cohen, P.S. (2015). Commensal and Pathogenic Escherichia coli 

1337 Metabolism in the Gut. Microbiol Spectr. 3, 10.1128/microbiolspec.MBP-0006–2014.

1338 Cotillard, A., Kennedy, S.P., Kong, L.C., Prifti, E., Pons, N., Le Chatelier, E., Almeida, M., 

1339 Quinquis, B., Levenez, F., Galleron, N., et al. (2013). Dietary intervention impact on gut 

1340 microbial gene richness. Nature 500, 585–588.

1341 Crook, N., Ferreiro, A., Gasparrini, A.J., Pesesky, M.W., Gibson, M.K., Wang, B., Sun, X., 

1342 Condiotte, Z., Dobrowolski, S., Peterson, D., et al. (2019). Adaptive Strategies of the 

1343 Candidate Probiotic E. coli Nissle in the Mammalian Gut. Cell Host Microbe 25, 499-512.e8.

1344 Csardi, G., and Nepusz, T. (2006). The igraph software package for complex network 

1345 research, InterJournal, Complex Systems 1695.

1346 Cullen, T.W., Schofield, W.B., Barry, N.A., Putnam, E.E., Rundell, E.A., Trent, M.S., Degnan, 

1347 P.H., Booth, J.C., Yu, H., and Goodman, J. (2015). Antimicrobial peptide resistance mediates 

1348 resilience of prominent gut commensals during inflammation. Science 347, 170–175.

1349 David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., Ling, 

1350 A. V., Devlin, A.S., Varma, Y., Fischbach, M.A., et al. (2014). Diet rapidly and reproducibly 

1351 alters the human gut microbiome. Nature 505, 559–563.

1352 Desai, M.S., Seekatz, A.M., Koropatkin, N.M., Kamada, N., Hickey, C.A., Wolter, M., Pudlo, 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



51

1353 N.A., Kitamoto, S., Terrapon, N., Muller, A., et al. (2016). A Dietary Fiber-Deprived Gut 

1354 Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 

1355 167, 1339-1353.e21.

1356 Deutschbauer, A., and Chen, Y. (2021). Functional genetics of human gut commensal 

1357 Bacteroides thetaiotaomicron reveals metabolic requirements for growth across 

1358 environments. Cell Rep. 34, 108789.

1359 Dominguez-Bello, M.G., Godoy-Vitorino, F., Knight, R., and Blaser, M.J. (2019). Role of the 

1360 microbiome in human development. Gut 68, 1108– 1114.

1361 Ernst, F.G.M., Huang, R., Shetty, S., Borman, T., Braccia, D.C., Bravo, H.C., and Leo, L. 

1362 (2020). R/Bioc microbiome ecosystem with SummarizedExperiment.

1363 Fabich, A.J., Leatham, M.P., Grissom, J.E., Wiley, G., Lai, H., Najar, F., Roe, B.A., Cohen, 

1364 P.S., and Conway, T. (2011). Genotype and phenotypes of an intestine-adapted Escherichia 

1365 coli K-12 mutant selected by animal passage for superior colonization. Infect. Immun. 79, 

1366 2430–2439.

1367 Faith, J.J., McNulty, N.P., Rey, F.E., and Gordon, J.I. (2011). Predicting a Human Gut 

1368 Microbiota’s Response to Diet in Gnotobiotic Mice. Science 333, 101–104.

1369 Fehlner-Peach, H., Magnabosco, C., Raghavan, V., Scher, J.U., Tett, A., Cox, L.M., 

1370 Gottsegen, C., Watters, A., Wiltshire-Gordon, J.D., Segata, N., et al. (2019). Distinct 

1371 Polysaccharide Utilization Profiles of Human Intestinal Prevotella copri Isolates. Cell Host 

1372 Microbe 26, 680-690.e5.

1373 Fernandes, D., A., Reid, J., Macklaim, M., J., McMurrough, T.A, Edgell, D.R., et al. (2014). 

1374 Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S 

1375 rRNA gene sequencing and selective growth experiments by compositional data analysis. 

1376 Microbiome 2, 1–13.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



52

1377 De Filippis, F., Pasolli, E., Tett, A., Tarallo, S., Naccarati, A., De Angelis, M., Neviani, E., 

1378 Cocolin, L., Gobbetti, M., Segata, N., et al. (2019). Distinct Genetic and Functional Traits of 

1379 Human Intestinal Prevotella copri Strains Are Associated with Different Habitual Diets. Cell 

1380 Host Microbe 25, 444-453.e3.

1381 Flint, H.J., Scott, K.P., Louis, P., and Duncan, S.H. (2012). The role of the gut microbiota in 

1382 nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589.

1383 Garud, N.R., Good, B.H., Hallatschek, O., and Pollard, K.S. (2019). Evolutionary dynamics of 

1384 bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, (1): e3000102.

1385 Ghalayini, M., Magnan, M., Dion, S., Zatout, O., Bourguignon, L., Tenaillon, O., and Lescat, 

1386 M. (2019). Long‐term evolution of the natural isolate of Escherichia coli 536 in the mouse gut 

1387 colonized after maternal transmission reveals convergence in the constitutive expression of 

1388 the lactose operon. Mol. Ecol. 00:1–16.

1389 Gilbert, J.A., Blaser, M.J., Caporaso, J.G., Jansson, J.K., Lynch, S.V., and Knight, R. (2018). 

1390 Current understanding of the human microbiome. Nat Med 24, 392–400.

1391 Giraud, A., Matic, I., Tenaillon, O., Clara, A., Radman, M., Fons, M., and Taddei, F. (2001). 

1392 Costs and benefits of high mutation rates: Adaptive evolution of bacteria in the mouse gut. 

1393 Science (80-. ). 291, 2606–2608.

1394 Giraud, A., Arous, S., Paepe, M. De, Gaboriau-Routhiau, V., Bambou, J.-C., Rakotobe, S., 

1395 Lindner, A.B., Taddei, F., and Cerf-Bensussan, N. (2008). Dissecting the Genetic 

1396 Components of Adaptation of Escherichia coli to the Mouse Gut. PLoS Genet. 4, e2.

1397 Hegreness, M., Shoresh, N., Hartl, D., and Kishony, R. (2006). An equivalence principle for 

1398 the incorporation of favorable mutations in asexual populations. Science 311, 1615–1617.

1399 Hooper, L. V, Littman, D.R., and Macpherson, A.J. (2012). Interactions Between the 

1400 Microbiota and the Immune System. Science 336, 1268–1273.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



53

1401 Hoskins, L.C., and Boulding, E.T. (1981). Mucin degradation in human colon ecosystems. 

1402 Evidence for the existence and role of bacterial subpopulations producing glycosidases as 

1403 extracellular enzymes. J. Clin. Invest. 67, 163–172.

1404 Hryckowian, A.J., Treuren, W., Smits, S.A., Davis, N.M., Gardner, J.O., Bouley, D.M., and 

1405 Sonnenburg, J.L. (2018). Microbiota-accessible carbohydrates suppress Clostridium difficile 

1406 infection in a murine model. Nat. Methods 3, 662–669.

1407 Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., and Aluru, S. (2018). High 

1408 throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat 

1409 Commun. 9, 5114.

1410 Johansson, M.E. V., Sjövall, H., and Hansson, G.C. (2013). The gastrointestinal mucus 

1411 system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10, 352–361.

1412 El Kaoutari, A., Armougom, F., Gordon, J.I., Raoult, D., and Henrissat, B. (2013). The 

1413 abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. 

1414 Rev. Microbiol. 11, 497–504.

1415 Kashyap, P.C., Marcobal, A., Ursell, L.K., Smits, S.A., Sonnenburg, E.D., Costello, E.K., 

1416 Higginbottom, S.K., Domino, S.E., Holmes, S.P., Relman, D.A., et al. (2013). Genetically 

1417 dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the 

1418 gut microbiota. Proc. Natl. Acad. Sci. U. S. A. 110, 17059–17064.

1419 Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P.A. (2019). Assembly of long, error-prone 

1420 reads using repeat graphs. Nat. Biotechnol. 37, 540–546.

1421 Kosmidis, I. (2021). brglm2: Bias Reduction in Generalized Linear Models. R package 

1422 version 0.7.1.

1423 Krautkramer, K.A., Fan, J., and Bäckhed, F. (2021). Gut microbial metabolites as multi-

1424 kingdom intermediates. Nat Rev Microbiol. 19, 77–94.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



54

1425 Kreuzer, M., and Hardt, W.D. (2020). How Food Affects Colonization Resistance against 

1426 Enteropathogenic Bacteria. Annu. Rev. Microbiol. 74, 787–813.

1427 Leatham, M.P., Stevenson, S.J., Gauger, E.J., Krogfelt, K.A., Lins, J.J., Haddock, T.L., 

1428 Autieri, S.M., Conway, T., and Cohen, P.S. (2005). Mouse intestine selects nonmotile flhDC 

1429 mutants of Escherichia coli MG1655 with increased colonizing ability and better utilization of 

1430 carbon sources. Infect. Immun. 73, 8039–8049.

1431 Lee, M.S., Donaldson, G.P., Mikulski, Z., Boyajian, S., Ley, K., and Mazmanian, S.K. (2013). 

1432 Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 

1433 501, 426–431.

1434 Lenth, R. V. (2020). emmeans: Estimated Marginal Means, aka Least-Squares Means. R 

1435 package version 1.5.3.

1436 Lescat, M., Launay, A., Ghalayini, M., Magnan, M., Glodt, J., Pintard, C., Dion, S., Denamur, 

1437 E., and Tenaillon, O. (2017). Using long-term experimental evolution to uncover the patterns 

1438 and determinants of molecular evolution of an Escherichia coli natural isolate in the 

1439 streptomycin-treated mouse gut. Mol. Ecol. 26, 1802–1817.

1440 Lourenco, M., Ramiro, R.S., Guleresi, D., Barroso-Batista, J., Xavier, K.B., Gordo, I., and 

1441 Sousa, A. (2016). A Mutational Hotspot and Strong Selection Contribute to the Order of 

1442 Mutations Selected for during Escherichia coli Adaptation to the Gut. PLOS Genet. 12, 

1443 e1006420.

1444 Lynch, J.B., and Sonnenburg, J.L. (2012). Prioritization of a plant polysaccharide over a 

1445 mucus carbohydrate is enforced by a Bacteroides hybrid two-component system. Mol. 

1446 Microbiol. 85, 478–491.

1447 Maharjan, R.P., and Ferenci, T. (2017). A shifting mutational landscape in 6 nutritional 

1448 states: Stress-induced mutagenesis as a series of distinct stress input–mutation output 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



55

1449 relationships. PLOS Biol. 15, e2001477.

1450 Manor, O., Dai, C.L., Kornilov, S.A., Smith, B., Price, N.D., Lovejoy, J.C., Gibbons, S.M., and 

1451 Magis, A.T. (2020). Health and disease markers correlate with gut microbiome composition 

1452 across thousands of people. Nat Commun. 11, 5206.

1453 Marcobal, A., Barboza, M., Sonnenburg, E.D., Pudlo, N., Martens, E.C., Desai, P., Lebrilla, 

1454 C.B., Weimer, B.C., Mills, D.A., German, J.B., et al. (2011). Bacteroides in the infant gut 

1455 consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10, 507–

1456 514.

1457 Martens, E.C., Chiang, H.C., and Gordon, J.I. (2008). Mucosal Glycan Foraging Enhances 

1458 Fitness and Transmission of a Saccharolytic Human Gut Bacterial Symbiont. Cell Host 

1459 Microbe 4, 447–457.

1460 Martens, E.C., Lowe, E.C., Chiang, H., Pudlo, N.A., Wu, M., McNulty, N.P., Abbott, D.W., 

1461 Henrissat, B., Gilbert, H.J., Bolam, D.N., et al. (2011). Recognition and Degradation of Plant 

1462 Cell Wall Polysaccharides by Two Human Gut Symbionts. PLoS Biol. 9, e1001221.

1463 McNulty, N.P., Wu, M., Erickson, A.R., Pan, C., Erickson, B.K., Martens, E.C., Pudlo, N.A., 

1464 Muegge, B.D., Henrissat, B., Hettich, R.L., et al. (2013). Effects of Diet on Resource 

1465 Utilization by a Model Human Gut Microbiota Containing Bacteroides cellulosilyticus WH2, a 

1466 Symbiont with an Extensive Glycobiome. PLoS Biol. 11, e1001637.

1467 Mimee, M., Tucker, A.C., Voigt, C.A., Lu Correspondence, T.K., and Lu, T.K. (2015). 

1468 Programming a Human Commensal Bacterium, Bacteroides thetaiotaomicron, to Sense and 

1469 Respond to Stimuli in the Murine Gut Microbiota. Cell Syst. 1, 62–71.

1470 Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, 

1471 P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., et al. (2020). vegan: Community Ecology 

1472 Package. R package version 2.5-7.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



56

1473 Oxford Nanopore Technologies Ltd. (2018). medaka: Sequence correction provided by ONT 

1474 Research.

1475 De Paepe, M., Gaboriau-Routhiau, V., Rainteau, D., Rakotobe, S., Taddei, F., and Cerf-

1476 Bensussan, N. (2011). Trade-Off between Bile Resistance and Nutritional Competence 

1477 Drives Escherichia coli Diversification in the Mouse Gut. PLoS Genet. 7, e1002107.

1478 Pedersen, T.L. (2020a). ggraph: An Implementation of Grammar of Graphics for Graphs and 

1479 Networks. R package version 2.0.4.

1480 Pedersen, T.L. (2020b). tidygraph: A Tidy API for Graph Manipulation. R package version 

1481 1.2.0.

1482 Png, C.W., Linden, S.K., Gilshenan, K.S., Zoetendal, E.G., McSweeney, C.S., Sly, L.I., 

1483 McGuckin, M.A., and Florin, T.H.J. (2010). Mucolytic bacteria with increased prevalence in 

1484 IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 

1485 105, 2420–2428.

1486 Porter, N.T., and Martens, E.C. (2017). The Critical Roles of Polysaccharides in Gut 

1487 Microbial Ecology and Physiology. Annu. Rev. Microbiol. 71, 349–369.

1488 Porter, N.T., Canales, P., Peterson, D.A., and Martens, E.C. (2017). A Subset of 

1489 Polysaccharide Capsules in the Human Symbiont Bacteroides thetaiotaomicron Promote 

1490 Increased Competitive Fitness in the Mouse Gut. Cell Host Microbe 22, 494-506.e8.

1491 Poulsen, L.K., Licht, T.R., Rang, C., Krogfelt, K.A., and Molin, S. (1995). Physiological state 

1492 of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice. J. 

1493 Bacteriol. 177, 5840–5845.

1494 Pudlo, N.A., Urs, K., Kumar, S.S., German, J.B., Mills, D.A., and Martens, E.C. (2015). 

1495 Symbiotic human gut bacteria with variable metabolic priorities for host mucosal glycans. 

1496 MBio 6, e01282-15.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



57

1497 Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., 

1498 Levenez, F., Yamada, T., et al. (2010). A human gut microbial gene catalogue established by 

1499 metagenomic sequencing. Nature 464, 59–65.

1500 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Rg Peplies, J., and 

1501 Glö Ckner, F.O. (2013). The SILVA ribosomal RNA gene database project: improved data 

1502 processing and web-based tools. Nucleic Acids Res. 41, D590–D596.

1503 Quinn, T.P., Erb, I., Gloor, G., Notredame, C., Richardson, M.F., and Crowley, T.M. (2019). A 

1504 field guide for the compositional analysis of any-omics data. Gigascience 8, 1–14.

1505 Radman, M., Matic, I., Halliday, J.A., and Taddei, F. (1995). Editing DNA replication and 

1506 recombination by mismatch repair: from bacterial genetics to mechanisms of predisposition 

1507 to cancer in humans. Philos. Trans. R. Soc. B Biol. Sci. 347, 97–103.

1508 Rahnavard, G., Franzosa, E.A., McIver, L.J., Schwager, E., Lloyd-Price, J., Weingart, G., 

1509 Moon, Y.S., Morgan, X.C., Waldron, L., and Huttenhower, C. (2017). High-sensitivity pattern 

1510 discovery in large multi’omic datasets.

1511 Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., and Medzhitov, R. (2004). 

1512 Recognition of commensal microflora by toll-like receptors is required for intestinal 

1513 homeostasis. Cell 118, 229–241.

1514 Rakoff-Nahoum, S., Coyne, M.J., and Comstock, L.E. (2014). An ecological network of 

1515 polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49.

1516 Ramiro, R.S., Durão, P., Bank, C., and Gordo, I. (2020). Low Mutational Load Allows for High 

1517 Mutation Rate Variation in Gut Commensal Bacteria. PLoS Biol. 18, e3000617.

1518 Relman, D.A. (2020). Thinking about the microbiome as a causal factor in human health and 

1519 disease: philosophical and experimental considerations. Curr. Opin. Microbiol. 54, 119–126.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



58

1520 Rey, F.E., Gonzalez, M.D., Cheng, J., Wu, M., Ahern, P.P., and Gordon, J.I. (2013). 

1521 Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc. Natl. Acad. Sci. 

1522 U. S. A. 110, 13582–13587.

1523 Rohart, F., Benoıˆt Gautier, B., Singh, A., and Cao, K.-A.L. (2017). mixOmics: An R package 

1524 for ’omics feature selection and multiple data integration.

1525 Salyers, A.A., Vercellotti, J.R., West, S.E., and Wilkins, T.D. (1977a). Fermentation of mucin 

1526 and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. 

1527 Microbiol. 33, 319–322.

1528 Salyers, A.A., West, S.E., Vercellotti, J.R., and Wilkins, T.D. (1977b). Fermentation of mucins 

1529 and plant polysaccharides by anaerobic bacteria from the human colon. Appl. Environ. 

1530 Microbiol. 34, 529–533.

1531 Schwalm, N.D., Townsend, G.E., and Groisman, E.A. (2017). Prioritization of polysaccharide 

1532 utilization and control of regulator activation in Bacteroides thetaiotaomicron. Mol. Microbiol. 

1533 104, 32–45.

1534 Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–

1535 2069.

1536 Singh, A., Shannon, C.P., Gautier, B., Rohart, F., Vacher, M., Tebbutt, S.J., and Cao, K.A.L. 

1537 (2019). DIABLO: An integrative approach for identifying key molecular drivers from multi-

1538 omics assays. Bioinformatics 35, 3055–3062.

1539 Sonnenburg, E.D., and Sonnenburg, J.L. (2014). Starving our Microbial Self: The Deleterious 

1540 Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metab. 20, 

1541 779–786.

1542 Sonnenburg, J.L., and Bäckhed, F. (2016). Diet–microbiota interactions as moderators of 

1543 human metabolism. Nature 535, 56–64.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



59

1544 Sonnenburg, E.D., Zheng, H., Joglekar, P., Higginbottom, S.K., Firbank, S.J., Bolam, D.N., 

1545 Sonnenburg, J.L., Coutinho, P.M., Minx, P., Latreille, P., et al. (2010). Specificity of 

1546 polysaccharide use in intestinal bacteroides species determines diet-induced microbiota 

1547 alterations. Cell 141, 1241–1252.

1548 Sonnenburg, E.D., Smits, S.A., Tikhonov, M., Higginbottom, S.K., Wingreen, N.S., and 

1549 Sonnenburg, J.L. (2016). Diet-induced extinctions in the gut microbiota compound over 

1550 generations. Nature 529, 212–215.

1551 Sonnenburg, J.L., Xu, J., Leip, D.D., Chen, C.-H., Westover, B.P., Weatherford, J., Buhler, 

1552 J.D., and Gordon, J.I. (2005). Glycan Foraging in Vivo by an Intestine-Adapted Bacterial 

1553 Symbiont. Science 307, 1955–1959.

1554 Sousa, A., Frazão, N., Ramiro, R.S., and Gordo, I. (2017). Evolution of commensal bacteria 

1555 in the intestinal tract of mice. Curr. Opin. Microbiol. 38, 114–121.

1556 The Human Microbiome Project Consortium* (2012). Structure, function and diversity of the 

1557 healthy human microbiome. Nature 486, 207–214.

1558 Thompson, J.A., Oliveira, R.A., Djukovic, A., Ubeda, C., and Xavier, K.B. (2015). 

1559 Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. 

1560 Cell Rep. 10, 1861–1871.

1561 Turnbaugh, P.J., Bä, F., Fulton, L., and Gordon, J.I. (2008). Diet-Induced Obesity Is Linked 

1562 to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host Microbe 

1563 3, 213–223.

1564 Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, 

1565 M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., et al. (2009a). A core gut microbiome in obese 

1566 and lean twins. Nature 457, 480–484.

1567 Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R., and Gordon, J.I. (2009b). 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



60

1568 The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized 

1569 Gnotobiotic Mice. Sci Transl Med 1, 6ra14.

1570 Turner, C.B., Marshall, C.W., and Cooper, V.S. (2018). Parallel genetic adaptation across 

1571 environments differing in mode of growth or resource availability. Evol. Lett. 2, 355–367.

1572 Ubeda, C., Djukovic, A., and Isaac, S. (2017). Roles of the intestinal microbiota in pathogen 

1573 protection. Clin. Transl. Immunol. 6, e128.

1574 UFZ, H.C. for E.R.- (2020). ASM1413175v1.

1575 Vaser, R., Sović, I., Nagarajan, N., and Šikić, M. (2017). Fast and accurate de novo genome 

1576 assembly from long uncorrected reads. Genome Res. 27, 737–746.

1577 Washington University Department of Molecular Biology and Pharmacology (2003). 

1578 ASM1106v1.

1579 Welling, G.W., Groen, G., Tuinte, J.H., Koopman, J.P., and Kennis, H.M. (1980). Biochemical 

1580 effects on germ-free mice of association with several strains of anaerobic bacteria. J. Gen. 

1581 Microbiol. 117, 57–63.

1582 Whitaker, W.R., Shepherd, E.S., Sonnenburg Correspondence, J.L., and Sonnenburg, J.L. 

1583 (2017). Tunable Expression Tools Enable Single-Cell Strain Distinction in the Gut 

1584 Microbiome. Cell 169, 538–546.

1585 Wick, R.R., Judd, L.M., Gorrie, C.L., and Holt, K.E. (2017). Completing bacterial genome 

1586 assemblies with multiplex MinION sequencing. Microb Genome 3(10):e000.

1587 Wilson, K. (2001). Preparation of Genomic DNA from Bacteria. In Current Protocols in 

1588 Molecular Biology, p. 2.4.

1589 Wotzka, S.Y., Kreuzer, M., Maier, L., Arnoldini, M., Nguyen, B.D., Brachmann, A.O., 

1590 Berthold, D.L., Zünd, M., Hausmann, A., Bakkeren, E., et al. (2019). Escherichia coli limits 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



61

1591 Salmonella Typhimurium infections after diet shifts and fat-mediated microbiota perturbation 

1592 in mice. Nat. Microbiol. 4, 2164–2174.

1593 Yilmaz, B., Mooser, C., Keller, I., Li, H., Zimmermann, J., Bosshard, L., Fuhrer, T., Gomez de 

1594 Aguero, M., Fernandez Trigo, N., Tschanz-Lischer, H., et al. (2021). Resource Long-term 

1595 evolution and short-term adaptation of microbiota strains and sub-strains in mice. Cell Host 

1596 Microbe 29, 1–14.

1597 Zhang, C., Zhang, M., Pang, X., Zhao, Y., Wang, L., and Zhao, L. (2012). Structural 

1598 resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J. 6, 

1599 1848–1857.

1600 Zhao, S., Lieberman, T.D., Poyet, M., Kauffman, K.M., Gibbons, S.M., Groussin, M., Xavier, 

1601 R.J., and Alm, E.J. (2019). Adaptive Evolution within Gut Microbiomes of Healthy People. 

1602 Cell Host Microbe 25, 656–667.

1603

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure 1 

1 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure 2 

2 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure 3 

3 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure 4 

4 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure 5 

5 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure 6 

6 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure 7 

7 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure S1 

1 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure S2 

2 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure S3 

3 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure S4 

4 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure S5 

5 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure S6 

6 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure S7 

7 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3907580

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed


